Bài 3 Trang 80 SGK Hình Học 10

LG a

Lập phương trình tổng quát của các đường thẳng \(AB, BC\), và \(CA.\)

Phương pháp giải:

Cách lập phương trình đường thẳng đi qua hai điểm \(A,B\):

+ Tìm tọa độ \(\overrightarrow {AB} \) từ đó suy ra VTPT của \(AB\).

+ Lập PTTQ: \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) = 0\)

Lời giải chi tiết:

+) Phương trình \(AB\).

Ta có: \(\overrightarrow {AB}  = \left( {2; - 5} \right)\)

Đường thẳng \(AB\) nhận \(\overrightarrow {AB}  = \left( {2; - 5} \right)\) làm VTCP nên nhận \(\overrightarrow {{n_1}}  = \left( {5;2} \right)\) làm VTPT

Mà \(AB\) đi qua \(A\left( {1;4} \right)\) nên PTTQ: \(5\left( {x - 1} \right) + 2\left( {y - 4} \right) = 0\) hay \(5x + 2y - 13 = 0\)

+) Phương trình \(AC\).

Ta có: \(\overrightarrow {AC}  = \left( {5; - 2} \right)\)

Đường thẳng \(AC\) nhận \(\overrightarrow {AC}  = \left( {5; - 2} \right)\) làm VTCP nên nhận \(\overrightarrow {{n_2}}  = \left( {2;5} \right)\) làm VTPT

Mà \(AC\) đi qua \(A\left( {1;4} \right)\) nên PTTQ: \(2\left( {x - 1} \right) + 5\left( {y - 4} \right) = 0\) hay \(2x + 5y - 22 = 0\)

+) Phương trình \(BC\).

Ta có: \(\overrightarrow {BC}  = \left( {3;3} \right)\)

Đường thẳng \(BC\) nhận \(\overrightarrow {BC}  = \left( {3;3} \right) = 3\left( {1;1} \right)\) làm VTCP nên nhận \(\overrightarrow {{n_3}}  = \left( {1; - 1} \right)\) làm VTPT

Mà \(BC\) đi qua \(B\left( {3; - 1} \right)\) nên PTTQ: \(1\left( {x - 3} \right) - 1\left( {y + 1} \right) = 0\) hay \(x - y - 4 = 0\)

Cách khác:

Phương trình đường thẳng \(AB:  \dfrac{x-1}{3-1}=\dfrac{y-4}{-1-4}\)

\(\Leftrightarrow  \dfrac{x-1}{2}=\dfrac{y-4}{-5}\) \( \Leftrightarrow 5x+2y-13=0. \)

Tương tự ta có:

phương trình đường thẳng \(BC: x - y -4 = 0\)

phương trình đường thẳng \(CA: 2x + 5y -22 = 0\)

Từ khóa » Bài Tập 3 Toán 10 Trang 80