Bài 3 Trang 84 SGK Hình Học 10

LG a

\(A(1; 2); B(5; 2); C(1; -3)\)

Phương pháp giải:

Gọi phương trình đường tròn có dạng:  \(x^2+y^2-2 ax – 2by +c = 0\) 

Khi đó thay tọa độ 3 điểm đề bài cho vào phương trình đường tròn ta được hệ phương trình 3 ẩn. Giải hệ phương trình này ta tìm được \(a, \, \, b, \, \, c\) hay tìm được phương trình đường tròn cần lập.

Lời giải chi tiết:

Gọi phương trình đường tròn có dạng: \((C):x^2+y^2-2 ax – 2by +c = 0\)

\(A(1; 2)\in (C)\) nên:

\(1^2+ 2^2– 2a -4b + c = 0\)\(\Leftrightarrow   2a + 4b – c = 5\)

\(B(5; 2)\in (C)\) nên:

\(5^2+ 2^2– 10a -4b + c = 0 \)\(\Leftrightarrow    10a + 4b – c = 29\)

\(C(1; -3)\in (C)\) nên:

\(1^2+ (-3)^2 – 2a + 6b + c = 0   \)\(\Leftrightarrow     2a - 6b – c = 10\)

Ta có hệ: \(\left\{\begin{matrix} 2a + 4b- c = 5 (1) & & \\ 10a +4b - c= 29 (2) & & \\ 2a- 6b -c =10 (3) & & \end{matrix}\right.\)

Giải hệ ta được:  \(\left\{ \matrix{a = 3 \hfill \cr b = - 0,5 \hfill \cr c = - 1 \hfill \cr} \right.\)

Phương trình đường tròn cần tìm là: \({{x^2} + {\rm{ }}{y^2} - {\rm{ }}6x{\rm{ }} + {\rm{ }}y{\rm{ }} - {\rm{ }}1{\rm{ }} = {\rm{ }}0} \)

Từ khóa » Toán 10 Bài 3 Trang 84