Bài 45 Trang 20 SGK Toán 8 Tập 1

LG a

\(2 - 25x^2= 0\);

Phương pháp giải:

- Phân tích các biểu thức ở vế trái thành nhân tử, sau đó áp dụng tính chất: 

\(A.B = 0 \Rightarrow A=0\) hoặc \(B=0\) 

- Áp dụng hằng đẳng thức hiệu hai bình phương.

\(3)\,{A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)

Lời giải chi tiết:

\(2 - 25x^2= 0 \) 

\(  (\sqrt2)^2 - (5x)^2 = 0\)

\(  (\sqrt 2 - 5x)( \sqrt 2 + 5x) = 0\)

\( \Rightarrow \sqrt 2 - 5{\rm{x}} = 0\) hoặc \(\sqrt 2 + 5{\rm{x}} = 0\)

+) Với \(\sqrt 2 - 5{\rm{x}} = 0\Rightarrow 5{\rm{x}}=\sqrt 2\) \(\Rightarrow x = \dfrac{{\sqrt 2 }}{5}\)

+) Với \(\sqrt 2 + 5{\rm{x}} = 0\Rightarrow 5{\rm{x}}=-\sqrt 2\) \(\Rightarrow x = -\dfrac{{\sqrt 2 }}{5}\)

Vậy \(x = \dfrac{{\sqrt 2 }}{5}\) hoặc \(x = \dfrac{{ - \sqrt 2 }}{5}\)

Cách khác:  

\(\begin{array}{l}2 - 25{x^2} = 0 \Rightarrow 25{x^2} = 2\\ \Rightarrow {x^2} = \dfrac{2}{{25}}\end{array}\)

\(\Rightarrow x = \sqrt {\dfrac{2}{{25}}} \) hoặc \(x = -\sqrt {\dfrac{2}{{25}}} \)

\(\Rightarrow x = \dfrac{{\sqrt 2 }}{5}\) hoặc \( x = -\dfrac{{\sqrt 2 }}{5}\)

Từ khóa » Giải Bài 45 Sgk Toán 8 Tập 1 Trang 20