Bài 45 Trang 27 SGK Toán 9 Tập 1

LG a

\(3\sqrt 3 \)  và \(\sqrt {12} \)

Phương pháp giải:

+ Đưa thừa số vào trong dấu căn rồi so sánh. 

+ Sử dụng quy tắc đưa thừa số vào trong dấu căn:

           \(A\sqrt{B}=\sqrt{A^2.B}\),  nếu \(A \ge 0,\ B \ge 0\).

           \(A\sqrt{B}=-\sqrt{A^2.B}\),  nếu \(A < 0,\ B\ge 0\).

+) Sử dụng định lí so sánh hai căn bậc hai số học:

              \(a < b \Leftrightarrow \sqrt{a} < \sqrt{b}\),   với \(a,\ b \ge 0\).

Lời giải chi tiết:

Ta có: 

\(3\sqrt{3}=\sqrt{3^2.3}=\sqrt{9.3}=\sqrt{27}\).

Vì \( 27>12 \Leftrightarrow \sqrt{27} > \sqrt{12}\)

                   \(\Leftrightarrow 3\sqrt{3} >\sqrt{12}\).

Vậy: \(3\sqrt{3}>\sqrt{12}\). 

Cách khác:

\(\sqrt {12}  = \sqrt {4.3}  = \sqrt {{2^2}.3}  = 2\sqrt 3  < 3\sqrt 3 \)

Từ khóa » Bài Tập Toán 9 Trang 27 Bài 45