Bài 6,7,8,9, 10 SGK Trang 70,71 SGK Toán 8 Tập 1: Hình Thang

Hình thang: Giải bài 6 trang 70; Bài 7,8,9,10 SGK trang 71 SGK Toán 8 tập 1 – Chương 1 .

Bài 6.hinh19Dùng thước và êke, ta có thể kiểm tra được hai đường thẳng có song song với nhau hay không (xem hình 19). Trên hình 20, có những tứ giác nào là hìnhthang, không là hìnhthang. Bằng cách nêu trên, hãy kiểm tra xem trong các tứgiác ở hình 20 là hìnhthang

hinh 20

Các bước tiến hành:

– Xét xem cần phải kiểm tra hai cạnh nào thuộc hai đường thẳng song song với nhau.

– Đặt mép cạnh góc vuông của êke trùng với một trong hai cạnh cần kiểm tra.

– Đặt mép thước trùng với mép cạnh góc vuông còn lại của êke.

– Giữ nguyên vị trí thước, dời êke để xét xem cạnh góc vuông của êke có trùng với cạnh còn lại mà ta cần kiểm tra của tứ giác. Nếu chúng trùng nhau thì tứgiác đó là hình-thang.

Các tứgiác ABCD, IKMN là hình-thang.

Tứgiác EFGH không là hình-thang.

Bài 7. Tìm x và y trên hình 21, biết rằng ABCD là hình thang có đáy là AB và CD.hinh21

Đáp án: a) Tứ giác ABCD là hình thang có đáy AB và CD nên AB//CD và AD, BC là hai cạnh bên.

Advertisements (Quảng cáo)

Suy ra:

∠A + ∠D =  1800 ⇒ x +  800 = 1800 ⇒ x= 1800– 800 = 1000

∠B + ∠C =  1800 ⇒ 400 + y =  1800 ⇒ y = 1800 – 400  = 1400

b) 2016-08-23_221338Ta có AB//CD ⇒ ∠BAD = ∠CDt (đồng vị) ⇒ x =700

∠uBC = ∠BCD (so le trong) ⇒ y = 500

c) Ta có AB//CD và BC ⊥ DC ⇒ BC ⊥ AB ⇒∠ABC = 900 ⇒x=900

Advertisements (Quảng cáo)

∠A + ∠D = 1800 ⇒ 650 + y = 1800 ⇒ y=1800 – 650 = 1150

Bài 8 trang 71. Hình.thang ABCD (AB // CD) có ∠A – ∠D = 200 ,∠B = 2∠C. Tính các góc của hình-thang.

2016-08-23_221909

Ta có hình thang ABCD (AB//CD):

∠A – ∠D = 200  ⇒ ∠A = 200 + ∠D (1)

Mà ∠A + ∠D = 1800 (2)

Thay (1) vào (2) ta có: ∠A + ∠D = 1800

⇔  200 + ∠D + ∠D = 1800  ⇒ 200 +2∠D= 1800

⇒2∠D = 1600 ⇒∠D = 800

Thay ∠D = 800 vào (1) ta được ∠A=200 + 800  = 1000 

Ta lại có có: ∠B = 2∠C (3);  ∠B + ∠C = 1800 (4)

Thay (3) vào (4) ta có 2∠C + ∠C = 1800 ⇒ 3∠C = 1800 ⇒∠C = 600

Thay ∠C = 600 vào (3) ∠B = 2∠C ⇒2.600 ⇒∠C =1200 

Bài 9 trang 71. Tứ giác ABCD có AB= BC và tia phân giác của góc A. Chứng minh rằng ABCD là hình thang.

Giải:2016-08-23_224359

Xét ΔABC có AB = BC (giả thiết) ⇒ Δ ABC cân tại đỉnh B ⇒ ∠BAC = ∠BCA. Ac là tia phân giác của góc ∠BAA (giả thiết) ⇒ ∠BAC = ∠DAC

⇒∠BCA = ∠DAC ⇒ BC//AD (Do góc ∠BCA,∠DAC so le trong) ⇒ tứ giác ABCD là hìnhthang.

Bài 10 trang 71 Toán 8 tập 1. Đố hình 22 là hình vẽ một chiếc thang trên hình vẽ có bao nhiêu hìnhthang?bai 10Ta có: AB//CD//EF//GH ⇒ Có tất cả 6 hìnhthang, đó là: ABDC, CDFE, EFHG, ABFE, CDHG, ABHG.

Từ khóa » Toán 8 Bài 6 Trang 71