Bài 6: Ma Trận Khả Nghịch

  • Trang Chủ
  • Đăng ký
  • Đăng nhập
  • Upload
  • Liên hệ

Lớp 12, Giáo Án Lớp 12, Bài Giảng Điện Tử Lớp 12

Trang ChủToán Học Lớp 12Giải Tích Lớp 12 Bài 6: Ma trận khả nghịch Bài 6: Ma trận khả nghịch

1.1 Các khái niệm cơ bản

Cho A là ma trận vuông cấp n, ma trận A gọi là ma trận khả nghịch nếu tồn tại ma trận B vuông cấp n sao cho

AB = BA = En (1)

(En là ma trận đơn vị cấp n)

Nếu A là ma trận khả nghịch thì ma trận B thỏa điều kiện (1) là duy nhất, và B gọi là ma trận nghịch đảo (ma trận ngược) của ma trận A, ký hiệu là A−1.

Vậy ta luôn có: A.A−1 = A−1.A = En

pdf 7 trang Người đăng haha99 Lượt xem 6362Lượt tải 1 Download Bạn đang xem tài liệu "Bài 6: Ma trận khả nghịch", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trênĐẠI SỐ TUYẾN TÍNH MA TRẬN KHẢ NGHỊCH Phiên bản đã chỉnh sửa PGS TS Mỵ Vinh Quang Ngày 6 tháng 12 năm 2004 1 Ma trận khả nghịch 1.1 Các khái niệm cơ bản Cho A là ma trận vuông cấp n, ma trận A gọi là ma trận khả nghịch nếu tồn tại ma trận B vuông cấp n sao cho AB = BA = En (1) (En là ma trận đơn vị cấp n) Nếu A là ma trận khả nghịch thì ma trận B thỏa điều kiện (1) là duy nhất, và B gọi là ma trận nghịch đảo (ma trận ngược) của ma trận A, ký hiệu là A−1. Vậy ta luôn có: A.A−1 = A−1.A = En 1.2 Các tính chất 1. A khả nghịch ⇐⇒ A không suy biến (detA 6= 0) 2. Nếu A, B khả nghịch thì AB cũng khả nghịch và (AB)−1 = B−1A−1 3. (At)−1 = (A−1)t 1.3 Các phương pháp tìm ma trận nghịch đảo 1.3.1 Phương pháp tìm ma trận nghịch đảo nhờ định thức Trước hết, ta nhớ lại phần bù đại số của một phần tử. Cho A là ma trận vuông cấp n, nếu ta bỏ đi dòng i, cột j của A, ta được ma trận con cấp n − 1 của A, ký hiệu Mij. Khi đó Aij = (−1)i+j detMij gọi là phần bù đại số của phần tử nằm ở dòng i, cột j của ma trận A. Ma trận PA =  A11 A21 · · · An1 A12 A22 · · · An2 ... ... . . . ... A1n A2n · · · Ann  =  A11 A12 · · · A1n A21 A22 · · · A2n ... ... . . . ... An1 An2 · · · Ann  t gọi là ma trận phụ hợp của ma trận A. 1 Ta có công thức sau đây để tìm ma trận nghịch đảo của A. Cho A là ma trận vuông cấp n. Nếu detA = 0 thì A không khả nghịch (tức là A không có ma trận nghịch đảo). Nếu detA 6= 0 thì A khả nghịch và A−1 = 1 detA PA Ví dụ. Tìm ma trận nghịch đảo của ma trận A =  1 2 10 1 1 1 2 3  Giải Ta có detA = ∣∣∣∣∣∣ 1 2 1 0 1 1 1 2 3 ∣∣∣∣∣∣ = 2 6= 0 Vậy A khả nghịch. Tìm ma trận phụ hợp PA của A. Ta có: A11 = (−1)1+1 ∣∣∣∣ 1 12 3 ∣∣∣∣ = 1 A12 = (−1)1+2 ∣∣∣∣ 0 11 3 ∣∣∣∣ = 1 A13 = (−1)1+3 ∣∣∣∣ 0 11 2 ∣∣∣∣ = −1 A21 = (−1)2+1 ∣∣∣∣ 2 12 3 ∣∣∣∣ = −4 A22 = (−1)2+2 ∣∣∣∣ 1 11 3 ∣∣∣∣ = 2 A23 = (−1)2+3 ∣∣∣∣ 1 21 2 ∣∣∣∣ = 0 A31 = (−1)3+1 ∣∣∣∣ 2 11 1 ∣∣∣∣ = 1 A32 = (−1)3+2 ∣∣∣∣ 1 10 1 ∣∣∣∣ = −1 A33 = (−1)3+3 ∣∣∣∣ 1 20 1 ∣∣∣∣ = 1 Vậy PA =  1 −4 11 2 −1 −1 0 1  2 và do đó A−1 = 1 2  1 −4 11 2 −1 −1 0 1  =  12 −2 121 2 1 −1 2−1 2 0 1 2  Nhận xét. Nếu sử dụng định thức để tìm ma trận nghịch đảo của một ma trận vuông cấp n, ta phải tính một định thức cấp n và n2 định thức cấp n − 1. Việc tính toán như vậy khá phức tạp khi n > 3. Bởi vậy, ta thường áp dụng phương pháp này khi n ≤ 3. Khi n ≥ 3, ta thường sử dụng các phương pháp dưới đây. 1.3.2 Phương pháp tìm ma trận nghịch đảo bằng cách dựa vào các phép biến đổi sơ cấp (phương pháp Gauss) Để tìm ma trận nghịch đảo của ma trận A vuông cấp n, ta lập ma trận cấp n× 2n [A |En] (En là ma trận đơn vị cấp n) [A |En] =  a11 a12 · · · a1n a21 a22 · · · a2n ... ... . . . ... an1 an2 · · · ann ∣∣∣∣∣∣∣∣∣ 1 0 · · · 0 0 1 · · · 0 ... ... . . . ... 0 0 · · · 1  Sau đó, dùng các phép biến đổi sơ cấp trên dòng đưa ma trận [A |En] về dạng [En |B]. Khi đó, B chính là ma trận nghịch đảo của A, B = A−1. Chú ý. Nếu trong quá trình biến đổi, nếu khối bên trái xuất hiện dòng gồm toàn số 0 thì ma trận A không khả nghịch. Ví dụ. Tìm ma trận nghịch đảo của ma trận A =  0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0  Giải [A |E4] =  0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 ∣∣∣∣∣∣∣∣ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1  −→d1→d1+d2+d3+d4  3 3 3 3 1 0 1 1 1 1 0 1 1 1 1 0 ∣∣∣∣∣∣∣∣ 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1  −→ d1→ 13d1  1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 ∣∣∣∣∣∣∣∣ 1 3 1 3 1 3 1 3 0 1 0 0 0 0 1 0 0 0 0 1  d2→−d1+d2−→d3→−d1+d3 d4→−d1+d4  1 1 1 1 0 −1 0 0 0 0 −1 0 0 0 0 −1 ∣∣∣∣∣∣∣∣ 1 3 1 3 1 3 1 3−1 3 2 3 −1 3 −1 3−1 3 −1 3 2 3 −1 3−1 3 −1 3 −1 3 2 3  3 −→ d1→d1+d2+d3+d4  1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 −1 ∣∣∣∣∣∣∣∣ −2 3 1 3 1 3 1 3−1 3 2 3 −1 3 −1 3−1 3 −1 3 2 3 −1 3−1 3 −1 3 −1 3 2 3  d2→−d2−→ d4→−d4 d3→−d3  1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ∣∣∣∣∣∣∣∣ −2 3 1 3 1 3 1 3 1 3 −2 3 1 3 1 3 1 3 1 3 −2 3 1 3 1 3 1 3 1 3 −2 3  Vậy A−1 =  −2 3 1 3 1 3 1 3 1 3 −2 3 1 3 1 3 1 3 1 3 −2 3 1 3 1 3 1 3 1 3 −2 3  1.3.3 Phương pháp tìm ma trận nghịch đảo bằng cách giải hệ phương trình Cho ma trận vuông cấp n A =  a11 a12 · · · a1n a21 a22 · · · a2n ... ... . . . ... an1 an2 · · · ann  Để tìm ma trận nghịch đảo A−1, ta lập hệ a11x1 + a12x2 + · · ·+ a1nxn = y1 a21x1 + a22x2 + · · ·+ a2nxn = y2 ... an1x1 + an2x2 + · · ·+ annxn = yn (2) trong đó x1, x2, . . . , xn là ẩn, y1, y2, . . . , yn là các tham số. * Nếu với mọi tham số y1, y2, . . . , yn, hệ phương trình tuyến tính (2) luôn có nghiệm duy nhất:  x1 = b11y1 + b12y2 + · · ·+ b1nyn x2 = b21y1 + b22y2 + · · ·+ b2nyn ... xn = bn1y1 + bn2y2 + · · ·+ bnnyn thì A−1 =  b11 b12 · · · b1n b21 b22 · · · b2n ... ... . . . ... bn1 bn2 · · · bnn  * Nếu tồn tại y1, y2, . . . , yn để hệ phương trình tuyến tính (2) vô nghiệm hoặc vô số nghiệm thì ma trận A không khả nghịch. 4 Ví dụ. Tìm ma trận nghịch đảo của ma trận A =  a 1 1 1 1 a 1 1 1 1 a 1 1 1 1 a  Giải Lập hệ  ax1 + x2 + x3 + x4 = y1 (1) x1 + ax2 + x3 + x4 = y2 (2) x1 + x2 + ax3 + x4 = y3 (3) x1 + x2 + x3 + ax4 = y4 (4) Ta giải hệ trên, cộng 2 vế ta có (a+ 3)(x1 + x2 + x3 + x4) = y1 + y2 + y3 + y4 (∗) 1. Nếu a = −3, chọn các tham số y1, y2, y3, y4 sao cho y1 + y2 + y3 + y4 6= 0. Khi đó (*) vô nghiệm, do đó hệ vô nghiệm, bởi vậy A không khả nghịch. 2. a 6= −3, từ (*) ta có x1 + x2 + x3 + x4 = 1 a+ 3 (y1 + y2 + y3 + y4) (∗∗) Lấy (1), (2), (3), (4) trừ cho (**), ta có (a− 1)x1 = 1 a+ 3 ((a+ 2)y1 − y2 − y3 − y4) (a− 1)x2 = 1 a+ 3 (−y1 + (a+ 2)y2 − y3 − y4) (a− 1)x3 = 1 a+ 3 (−y1 − y2 + (a+ 2)y3 − y4) (a− 1)x4 = 1 a+ 3 (−y1 − y2 − y3 + (a+ 2)y4) (a) Nếu a = 1, ta có thể chọn tham số y1, y2, y3, y4 để (a+ 2)y1 − y2 − y3 − y4 khác 0. Khi đó hệ và nghiệm và do đó A không khả nghịch. (b) Nếu a 6= 1, ta có x1 = 1 (a− 1)(a+ 3)((a+ 2)y1 − y2 − y3 − y4) x2 = 1 (a− 1)(a+ 3)(−y1 + (a+ 2)y2 − y3 − y4) x3 = 1 (a− 1)(a+ 3)(−y1 − y2 + (a+ 2)y3 − y4) 5 x4 = 1 (a− 1)(a+ 3)(−y1 − y2 − y3 + (a+ 2)y4) Do đó A−1 = 1 (a− 1)(a+ 3)  a+ 2 −1 −1 −1 −1 a+ 2 −1 −1 −1 −1 a+ 2 −1 −1 −1 −1 a+ 2  Tóm lại: Nếu a = −3, a = 1 thì ma trận A không khả nghịch. Nếu a 6= −3, a 6= 1, ma trận nghịch đảo A−1 được xác định bởi công thức trên. 6 BÀI TẬP Tìm ma trận nghịch đảo của các ma trận sau 22.  1 0 32 1 1 3 2 2  23.  1 3 22 1 3 3 2 1  24.  −1 1 1 1 1 −1 1 1 1 1 −1 1 1 1 1 −1  25.  0 1 1 1 −1 0 1 1 −1 −1 0 1 −1 −1 −1 0  Tìm ma trận nghịch đảo của các ma trận vuông cấp n 26.  1 1 1 · · · 1 0 1 1 · · · 1 0 0 1 · · · 1 ... ... ... . . . ... 0 0 0 · · · 1  27.  1 + a 1 1 · · · 1 1 1 + a 1 · · · 1 1 1 1 + a · · · 1 ... ... ... . . . ... 1 1 1 · · · 1 + a  7

Tài liệu đính kèm:

  • pdfbai6.pdf
Tài liệu liên quan
  • docĐề kiểm tra chất lượng lớp 12 môn: Toán , Khối A - Trường THPT Tam Nông

    Lượt xem Lượt xem: 1326 Lượt tải Lượt tải: 0

  • docLuyện tập Phương trình, bất phương trình vô tỉ

    Lượt xem Lượt xem: 1181 Lượt tải Lượt tải: 0

  • docĐề thi học kỳ I môn: Toán – lớp 12 (ban A) - Trường THPT Thanh Bình 1

    Lượt xem Lượt xem: 1216 Lượt tải Lượt tải: 0

  • docĐề dự bị 1 - Tuyển sinh đại học môn toán khối B - Năm 2003

    Lượt xem Lượt xem: 1142 Lượt tải Lượt tải: 0

  • docGiáo án Giải tích lớp 12 tiết 28: Luyện tập

    Lượt xem Lượt xem: 1296 Lượt tải Lượt tải: 0

  • docĐề thi học kỳ I môn: Toán lớp 12 - Trung tâm GDTX Cẩm Thuỷ

    Lượt xem Lượt xem: 1735 Lượt tải Lượt tải: 0

  • docGiáo án Giải tích 12 NC tiết 73, 74: Căn bậc hai của số phức và phương trình bậc hai

    Lượt xem Lượt xem: 1324 Lượt tải Lượt tải: 0

  • docHệ phương trình – Hướng dẫn giải các đề thi đại học: 2002 - 2012

    Lượt xem Lượt xem: 1172 Lượt tải Lượt tải: 0

  • docĐề kiểm tra học kỳ trường THPT Krôngbông (năm học : 2006 - 2007)

    Lượt xem Lượt xem: 996 Lượt tải Lượt tải: 0

  • pdfÐề thi thử đại học, cao đẳng năm 2010 môn thi: Toán, khối A, B

    Lượt xem Lượt xem: 781 Lượt tải Lượt tải: 0

Copyright © 2025 Lop12.net - Giáo án điện tử lớp 12, Sáng kiến kinh nghiệm hay, chia sẻ thủ thuật phần mềm

Facebook Twitter

Từ khóa » Các Tìm Ma Trận Khả Nghịch