Bài Giảng Toán Cao Cấp - Chương 3: Hàm Số Và Giới Hạn
Có thể bạn quan tâm
- Đăng ký
- Đăng nhập
- Liên hệ
Thư viện tài liệu, ebook tổng hợp lớn nhất Việt Nam
Website chia sẻ tài liệu, ebook tham khảo cho các bạn học sinh, sinh viên
- Trang Chủ
- Tài Liệu
- Upload
Định lý • Tổng, hiệu, tích và thương của các hàm số liên tục tại x0 là hàm số liên tục tại x0. • Hàm số sơ cấp xác định ở đâu thì liên tục ở đó. • Hàm số liên tục trên một đoạn thì đạt giá trị lớn nhất và nhỏ nhất trên đoạn đó.
Bạn đang xem nội dung tài liệu Bài giảng Toán cao cấp - Chương 3: Hàm số và giới hạn, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên10/13/2012 1 Ø Chương 3. Hàm số và giới hạn §1. Bổ túc về hàm số §2. Giới hạn của hàm số §3. Đại lượng vô cùng bé – vô cùng lớn §4. Hàm số liên tục . §1. BỔ TÚC VỀ HÀM SỐ 1.1. Khái niệm cơ bản 1.1.1. Định nghĩa hàm số • Cho ,X Y ¡ khác rỗng. Ánh xạ :f X Y với ( )x y f xa là một hàm số. Khi đó: – Miền xác định (MXĐ) của f, ký hiệu Df, là tập X. – Miền giá trị (MGT) của f là: ( )G y f x x X . Ø Chương 3. Hàm số và giới hạn – Nếu 1 2 1 2( ) ( )f x f x x x thì f là đơn ánh. – Nếu f(X) = Y thì f là toàn ánh. – Nếu f vừa đơn ánh vừa toàn ánh thì f là song ánh. VD 1. a) Hàm số :f ¡ ¡ thỏa ( ) 2xy f x là đơn ánh. b) Hàm số : [0; )f ¡ thỏa 2( )f x x là toàn ánh. c) Hsố : (0; )f ¡ thỏa ( ) lnf x x là song ánh. • Hàm số ( )y f x được gọi là hàm chẵn nếu: ( ) ( ), .ff x f x x D • Hàm số ( )y f x được gọi là hàm lẻ nếu: ( ) ( ), .ff x f x x D Ø Chương 3. Hàm số và giới hạn Nhận xét – Đồ thị của hàm số chẵn đối xứng qua trục tung. – Đồ thị của hàm số lẻ đối xứng qua gốc tọa độ. 1.1.2. Hàm số hợp • Cho hai hàm số f và g thỏa điều kiện g fG D . Khi đó, hàm số ( ) ( )( ) [ ( )]h x f g x f g x o được gọi là hàm số hợp của f và g. Chú ý ( )( ) ( )( ).f g x g f xo o VD 2. Hàm số 2 2 22( 1) 1y x x là hàm hợp của 2( ) 2f x x x và 2( ) 1g x x . Ø Chương 3. Hàm số và giới hạn 1.1.3. Hàm số ngược • Hàm số g được gọi là hàm số ngược của f, ký hiệu 1g f , nếu ( ), fx g y y G . Nhận xét – Đồ thị hàm số 1( )y f x đối xứng với đồ thị của hàm số ( )y f x qua đường thẳng y x . VD 3. Cho ( ) 2xf x thì 1 2( ) logf x x , mọi x > 0. Ø Chương 3. Hàm số và giới hạn 1.2. Hàm số lượng giác ngược 1.2.1. Hàm số y = arcsin x • Hàm số siny x có hàm ngược trên ; 2 2 là 1 : [ 1; 1] ; 2 2 f arcsinx y xa . VD 4. arcsin 0 0 ; arcsin( 1) 2 ; 3arcsin 2 3 . Ø Chương 3. Hàm số và giới hạn Chú ý arcsin arccos , [ 1; 1]. 2 x x x 1.2.2. Hàm số y = arccos x • Hàm số cosy x có hàm ngược trên [0; ] là 1 : [ 1; 1] [0; ]f arccosx y xa . VD 5. arccos0 2 ; arccos( 1) ; 3arccos 2 6 ; 1 2arccos 2 3 . 10/13/2012 2 Ø Chương 3. Hàm số và giới hạn 1.2.3. Hàm số y = arctan x • Hàm số tany x có hàm ngược trên ; 2 2 là 1 : ; 2 2 f ¡ arctanx y xa . VD 6. arctan 0 0 ; arctan( 1) 4 ; arctan 3 3 . Quy ước. arctan , arctan . 2 2 Ø Chương 3. Hàm số và giới hạn 1.2.4. Hàm số y = arccot x • Hàm số coty x có hàm ngược trên (0; ) là 1 : (0; )f ¡ cotx y arc xa . VD 7. cot0 2 arc ; 3cot( 1) 4 arc ; cot 3 6 arc . Quy ước. cot( ) 0, cot( ) .arc arc Ø Chương 3. Hàm số và giới hạn §2. GIỚI HẠN CỦA HÀM SỐ 2.1. Các định nghĩa Định nghĩa 1 • Cho hàm số f(x) xác định trên (a; b). Ta nói f(x) có giới hạn là L (hữu hạn) khi 0 [ ; ]x x a b , ký hiệu 0 lim ( ) x x f x L , nếu 0 cho trước ta tìm được 0 sao cho khi 00 x x thì ( )f x L . Định nghĩa 2 (định nghĩa theo dãy) • Cho hàm số f(x) xác định trên (a; b). Ta nói f(x) có giới hạn là L (hữu hạn) khi 0 [ ; ]x x a b , ký hiệu 0 lim ( ) x x f x L , nếu mọi dãy {xn} trong 0( ; ) \ { }a b x mà 0nx x thì lim ( )nn f x L . Ø Chương 3. Hàm số và giới hạn Định nghĩa 3 (giới hạn tại vô cùng) • Ta nói f(x) có giới hạn là L (hữu hạn) khi x , ký hiệu lim ( ) x f x L , nếu 0 cho trước ta tìm được N > 0 đủ lớn sao cho khi x > N thì ( )f x L . • Tương tự, ký hiệu lim ( ) x f x L , nếu 0 cho trước ta tìm được N < 0 có trị tuyệt đối đủ lớn sao cho khi x < N thì ( )f x L . Định nghĩa 4 (giới hạn vô cùng) • Ta nói f(x) có giới hạn là khi 0x x , ký hiệu 0 lim ( ) x x f x , nếu 0M lớn tùy ý cho trước ta tìm được 0 sao cho khi 00 x x thì ( )f x M . Ø Chương 3. Hàm số và giới hạn • Tương tự, ký hiệu 0 lim ( ) x x f x , nếu 0M có trị tuyệt đối lớn tùy ý cho trước ta tìm được 0 sao cho khi 00 x x thì ( )f x M . Định nghĩa 5 (giới hạn 1 phía) • Nếu f(x) có giới hạn là L (có thể là vô cùng) khi 0x x với 0x x thì ta nói f(x) có giới hạn phải tại x0 (hữu hạn), ký hiệu 0 0 lim ( ) x x f x L hoặc 0 lim ( ) x x f x L . • Nếu f(x) có giới hạn là L (có thể là vô cùng) khi 0x x với 0x x thì ta nói f(x) có giới hạn trái tại x0 (hữu hạn), ký hiệu 0 0 lim ( ) x x f x L hoặc 0 lim ( ) x x f x L . Chú ý. 0 0 0 lim ( ) lim ( ) lim ( ) . x x x x x x f x L f x f x L Ø Chương 3. Hàm số và giới hạn 2.2. Tính chất Cho 0 lim ( ) x x f x a và 0 lim ( ) x x g x b . Khi đó: 1) 0 lim [ . ( )] . x x C f x C a (C là hằng số). 2) 0 lim [ ( ) ( )] x x f x g x a b . 3) 0 lim [ ( ) ( )] x x f x g x ab ; 4) 0 ( ) lim , 0 ( )x x f x a b g x b ; 5) Nếu 0 0( ) ( ), ( ; )f x g x x x x thì a b . 6) Nếu 0 0( ) ( ) ( ), ( ; )f x h x g x x x x và 0 0 lim ( ) lim ( ) x x x x f x g x L thì 0 lim ( ) x x h x L . 10/13/2012 3 Ø Chương 3. Hàm số và giới hạn VD 1. Tìm giới hạn 2 12 lim 3 x x x x L x . A. 9L ; B. 4L ; C. 1L ; D. 0L . Giải. Ta có: 2. 1 22lim 2 . 3 x x x x L B x Định lý Nếu 0 0 lim ( ) 0, lim ( ) x x x x u x a v x b thì: 0 ( )lim [ ( )] .v x b x x u x a Ø Chương 3. Hàm số và giới hạn Các kết quả cần nhớ 1) 0 0 1 1 lim , lim x xx x . 2) Xét 1 1 0 1 1 0 ... lim ... n n n n m mx m m a x a x a L b x b x b , ta có: a) n n a L b nếu n m ; b) 0L nếu n m ; c) L nếu n m . 3) 0 0 sin tan lim lim 1 x x x x x x . Ø Chương 3. Hàm số và giới hạn VD 2. Tìm giới hạn 2 2 3 lim 1 2 1 x x x L x . A. L ; B. 3L e ; C. 2L e ; D. 1L . 4) Số e: 1 0 1 lim 1 lim 1 . x x x x x e x Giải. 22 2 . 3 3 2 12 1 2 l 2 m 3 1 1 i x x x x x x L x x . Ø Chương 3. Hàm số và giới hạn Khi x thì 2 2 3 3 0, 2 . 3 2 1 2 1 x x x x x 22 1 3 3 2 3 lim 1 2 1 x x x x e L e B x . Ø Chương 3. Hàm số và giới hạn VD 3. Tìm giới hạn 1 2 4 0 lim 1 tan x x L x . A. L ; B. 1L ; C. 4L e ; D. L e . Giải. 2 21 . 1 tan t 4 0 an 2tanlim 1 x x x x L x 2 2 1 tan . 1 4 42 tan 0 lim 1 tan x x x x x e C . Ø Chương 3. Hàm số và giới hạn §3. ĐẠI LƯỢNG VÔ CÙNG BÉ – VÔ CÙNG LỚN 3.1. Đại lượng vô cùng bé a) Định nghĩa Hàm số ( )x được gọi là đại lượng vô cùng bé (VCB) khi 0x x nếu 0 lim ( ) 0 x x x ( 0 x có thể là vô cùng). VD 1. 3( ) tan sin 1x x là VCB khi 1x ; 2 1 ( ) ln x x là VCB khi x . 10/13/2012 4 Ø Chương 3. Hàm số và giới hạn b) Tính chất của VCB 1) Nếu ( ), ( )x x là các VCB khi 0x x thì ( ) ( )x x và ( ). ( )x x là VCB khi 0x x . 2) Nếu ( )x là VCB và ( )x bị chận trong lân cận 0x thì ( ). ( )x x là VCB khi 0x x . 3) 0 lim ( ) ( ) ( ) x x f x a f x a x , trong đó ( )x là VCB khi 0x x . Ø Chương 3. Hàm số và giới hạn c) So sánh các VCB • Định nghĩa Cho ( ), ( )x x là các VCB khi 0x x , 0 ( ) lim ( )x x x k x . Khi đó: – Nếu 0k , ta nói ( )x là VCB cấp cao hơn ( )x , ký hiệu ( ) 0( ( ))x x . – Nếu k , ta nói ( )x là VCB cấp thấp hơn ( )x . – Nếu 0 k , ta nói ( )x và ( )x là các VCB cùng cấp. – Đặc biệt, nếu 1k , ta nói ( )x và ( )x là các VCB tương đương, ký hiệu ( ) ( )x x : . Ø Chương 3. Hàm số và giới hạn VD 2. • 1 cosx là VCB cùng cấp với 2x khi 0x vì: 2 2 20 0 2 sin1 cos 12lim lim 2 4 2 x x x x x x . • 2 2sin 3( 1) 9( 1)x x : khi 1x . Ø Chương 3. Hàm số và giới hạn • Tính chất của VCB tương đương khi x → x0 1) ( ) ( ) ( ) ( ) 0( ( )) 0( ( ))x x x x x x : . 2) Nếu ( ) ( ), ( ) ( )x x x x : : thì ( ) ( )x x : . 3) Nếu 1 1 2 2( ) ( ), ( ) ( )x x x x : : thì 1 2 1 2( ) ( ) ( ) ( )x x x x : . 4) Nếu ( ) 0( ( ))x x thì ( ) ( ) ( )x x x : . Ø Chương 3. Hàm số và giới hạn • Quy tắc ngắt bỏ VCB cấp cao Cho ( ), ( )x x là tổng các VCB khác cấp khi 0x x thì 0 ( ) lim ( )x x x x bằng giới hạn tỉ số hai VCB cấp thấp nhất của tử và mẫu. VD 3. Tìm giới hạn 3 4 20 cos 1 lim x x x L x x . Giải. 0 2 3 4 (1 cos lim ) x x L x x x 20 1 cos 1 lim 2x x x . Ø Chương 3. Hàm số và giới hạn • Các VCB tương đương cần nhớ khi x → 0 1) sin x x: ; 2) tanx x: ; 3) arcsin x x: ; 4) arctanx x: 5) 2 1 cos 2 x x : ; 6) 1xe x : ; 7) ln(1 )x x : ; 8) 1 1n xx n : . Chú ý Nếu ( )u x là VCB khi 0x thì ta có thể thay x bởi ( )u x trong 8 công thức trên. 10/13/2012 5 Ø Chương 3. Hàm số và giới hạn VD 4. Tính giới hạn 2 20 ln(1 2 sin ) lim sin .tanx x x L x x . Giải. Khi 0x , ta có: 2 2 2 2 2 2 ln(1 2 sin ) 2 sin 2 . 2 sin .tan . . x x x x x x x x x x x x : : . Vậy 2L . Ø Chương 3. Hàm số và giới hạn VD 5. Tính 2 2 30 sin 1 1 3 tan lim sin 2x x x x L x x . Vậy 0 12lim 2 4x x L x . Giải. Khi 0x , ta có: 2 2tan x x: (cấp 2), 3 3sin x x: (cấp 3), sin 1 1 1 1 2 x x x : : (cấp 1). Ø Chương 3. Hàm số và giới hạn Chú ý Quy tắc VCB tương đương không áp dụng được cho hiệu hoặc tổng của các VCB nếu chúng làm triệt tiêu tử hoặc mẫu của phân thức. VD 6. 2 20 0 2 ( 1) ( 1) lim lim x x x x x x e e e e x x 20 ( ) lim 0 x x x x (Sai!). 3 3 0 0 lim lim tanx x x x x x x x (Sai!). Ø Chương 3. Hàm số và giới hạn VD 7. 3 cos 1 2 sin x x x là VCL khi 0x ; 3 2 1 cos 4 3 x x x x là VCL khi x . Nhận xét. Hàm số ( )f x là VCL khi 0x x thì 1 ( )f x là VCB khi 0x x . 3.2. Đại lượng vô cùng lớn a) Định nghĩa Hàm số ( )f x được gọi là đại lượng vô cùng lớn (VCL) khi 0x x nếu 0 lim ( ) x x f x ( 0 x có thể là vô cùng). Ø Chương 3. Hàm số và giới hạn b) So sánh các VCL • Định nghĩa Cho ( ), ( )f x g x là các VCL khi 0x x , 0 ( ) lim ( )x x f x k g x . Khi đó: – Nếu 0k , ta nói ( )f x là VCL cấp thấp hơn ( )g x . – Nếu k , ta nói ( )f x là VCL cấp cao hơn ( )g x . – Nếu 0 k , ta nói ( )f x và ( )g x là các VCL cùng cấp. – Đặc biệt, nếu 1k , ta nói ( )f x và ( )g x là các VCL tương đương. Ký hiệu ( ) ( )f x g x: . Ø Chương 3. Hàm số và giới hạn VD 8. • 3 3 x là VCL khác cấp với 3 1 2x x khi 0x vì: 3 3 3 3 30 0 0 3 1 2 lim : 3 lim 3 lim 2x x x x x x x x x x x . • 3 32 1 2x x x : khi x . 10/13/2012 6 Ø Chương 3. Hàm số và giới hạn • Quy tắc ngắt bỏ VCL cấp thấp Cho ( )f x và ( )g x là tổng các VCL khác cấp khi 0x x thì 0 ( ) lim ( )x x f x g x bằng giới hạn tỉ số hai VCL cấp cao nhất của tử và mẫu. Ø Chương 3. Hàm số và giới hạn Giải. 3 3 1 lim 33x x A x . 3 7 1 lim lim 0 22x x x B xx . VD 9. Tính các giới hạn: 3 3 cos 1 lim 3 2x x x A x x ; 3 2 7 2 2 1 lim 2 sinx x x B x x . Ø Chương 3. Hàm số và giới hạn §4. HÀM SỐ LIÊN TỤC 4.1. Định nghĩa • Số 0 fx D được gọi là điểm cô lập của f(x) nếu 0 0 00 : ( ; ) \ { }x x x x thì fx D . • Hàm số ( )f x liên tục tại 0 x nếu 0 0lim ( ) ( )x x f x f x . • Hàm số ( )f x liên tục trên tập X nếu ( )f x liên tục tại mọi điểm 0x X . Quy ước • Hàm số ( )f x liên tục tại mọi điểm cô lập của nó. Ø Chương 3. Hàm số và giới hạn 4.2. Định lý • Tổng, hiệu, tích và thương của các hàm số liên tục tại 0 x là hàm số liên tục tại 0 x . • Hàm số sơ cấp xác định ở đâu thì liên tục ở đó. • Hàm số liên tục trên một đoạn thì đạt giá trị lớn nhất và nhỏ nhất trên đoạn đó. Ø Chương 3. Hàm số và giới hạn • Định lý Hàm số ( )f x liên tục tại 0 x nếu 0 0 0lim ( ) lim ( ) ( ). x x x x f x f x f x 4.3. Hàm số liên tục một phía • Định nghĩa Hàm số ( )f x được gọi là liên tục trái (phải) tại 0 x nếu 0 0lim ( ) ( ) x x f x f x ( 0 0lim ( ) ( ) x x f x f x ). Ø Chương 3. Hàm số và giới hạn VD 1. Cho hàm số 2 23 tan sin , 0( ) 2 , 0 x x xf x x x . Giá trị của để hàm số liên tục tại 0x là: A. 0 ; B. 1 2 ; C. 1 ; D. 3 2 . Giải. Ta có 0 lim ( ) (0) x f x f . Mặt khác, khi 0x ta có: 2 2 23 tan sin 1 2 2 2 xx x x x : 10/13/2012 7 Ø Chương 3. Hàm số và giới hạn 0 1 lim ( ) . 2x f x Hàm số ( )f x liên tục tại 0x 0 0 1 lim ( ) lim ( ) (0) 2x x f x f x f B . Ø Chương 3. Hàm số và giới hạn VD 2. Cho hàm số 2 2 ln(cos ) , 0 ( ) arctan 2 2 3, 0 x x f x x x x . Giá trị của để hàm số liên tục tại 0x là: A. 17 12 ; B. 17 12 ; C. 3 2 ; D. 3 2 . Giải. Khi 0x , ta có: 2 2 2arctan 2 3x x x : ; 2 ln(cos ) ln[1 (cos 1)] cos 1 2 x x x x : : Ø Chương 3. Hàm số và giới hạn Hàm số ( )f x liên tục tại 0x 0 1 lim ( ) (0) 2 3 6x f x f A . 2 2 2 2 0 ln(cos ) 12 lim ( ) 6arctan 2 3 x x x f x x x x : . Ø Chương 3. Hàm số và giới hạn 4.4. Phân loại điểm gián đoạn • Nếu hàm số ( )f x không liên tục tại 0 x thì 0 x được gọi là điểm gián đoạn của ( )f x . • Nếu tồn tại các giới hạn: 0 0lim ( ) ( ) x x f x f x , 0 0lim ( ) ( ) x x f x f x nhưng 0( )f x , 0( )f x và 0 ( )f x không đồng thời bằng nhau thì ta nói 0 x là điểm gián đoạn loại một. Ngược lại, 0 x là điểm gián đoạn loại hai. Các file đính kèm theo tài liệu này:
baigiangtoancaocap_gv_ngoquangminh_chuong3_6553.pdf
Bóng của đoạn trong poset các tập con tập đa bội5 trang | Lượt xem: 1657 | Lượt tải: 0
Nhập môn đại số tuyến tính39 trang | Lượt xem: 2493 | Lượt tải: 1
Slide bài giảng môn toán a2 cao đẳng21 trang | Lượt xem: 2709 | Lượt tải: 3
Toán rời rạc - Những khái niệm và tính chất cơ bản42 trang | Lượt xem: 1419 | Lượt tải: 0
Toán học - Chương 1: Các khái niệm cơ bản của lý thuyết xác suất16 trang | Lượt xem: 1116 | Lượt tải: 0
Các câu đố và lời giải34 trang | Lượt xem: 4855 | Lượt tải: 2
Đề cương chi tiết học phần môn Qui hoạch Toán học7 trang | Lượt xem: 1068 | Lượt tải: 0
Giáo trình Xác suất thống kê - Chương 4: Mẫu và các tham số mẫu20 trang | Lượt xem: 2461 | Lượt tải: 0
Toán học - Chương 6: Phương trình vi phân cấp 238 trang | Lượt xem: 1454 | Lượt tải: 0
Xác suất thống kê - Chương II: Thu thập dữ liệu43 trang | Lượt xem: 1747 | Lượt tải: 0
Từ khóa » Giới Hạn Hàm Số Toán Cao Cấp
-
Các Công Thức Tính Giới Hạn Trong Toán Cao Cấp, Toán A2
-
Chuyên Đề Và Phương Pháp Tìm Giới Hạn Hàm Số Toán Cao Cấp ...
-
Giới Hạn Và Hàm Số Liên Tục Toán Cao Cấp Cho Sinh Viên Năm Nhất
-
[Toán Cao Cấp] Giới Hạn Hàm Số. Tính Giới Hạn Bằng ... - YouTube
-
Cách Tính Giới Hạn Hàm Số Toán Cao Cấp - 123doc
-
[Toán Cao Cấp] Giới Hạn Hàm Số. Tính Giới Hạn Bằng định Nghĩa ...
-
[Toán Cao Cấp] Giới Hạn Hàm Số | Khái Niệm, Tính Chất Giới Hạn Hàm Số
-
(PDF) BÀI GIẢNG TOÁN CAO CẤP | King Kingsley
-
Bài Tập Toán Cao Cấp - Bookbooming - SlideShare
-
Bài Tập Kèm Lời Giải - Giới Hạn Hàm Số PDF - Thư Viện Miễn Phí
-
[PDF] BÀI GIẢNG TOÁN CAO CẤP 1 | Tientrangtailieu
-
Các Giới Hạn đặc Biệt Toán Cao Cấp
-
Tính Giới Hạn Lim Toán Cao Cấp
-
Giới Hạn Lim Toán Cao Cấp