Bài Tập Đại Số 9 - Chương I: Căn Bậc Hai - Căn Bậc Ba - Trần Sĩ Tùng
Có thể bạn quan tâm
- Trang Chủ
- Đăng ký
- Đăng nhập
- Upload
- Liên hệ

- Home
- Mầm Non - Mẫu Giáo
- Nhà Trẻ
- Mầm
- Chồi
- Lá
- Tiểu Học
- Lớp 1
- Lớp 2
- Lớp 3
- Lớp 4
- Lớp 5
- Trung Học Cơ Sở
- Lớp 6
- Tiếng Anh 6
- Ngữ Văn 6
- Toán Học 6
- Khoa Học Tự Nhiên 6
- Vật Lí 6
- Sinh Học 6
- Lịch Sử 6
- Địa Lí 6
- Tin Học 6
- Công Nghệ 6
- Âm Nhạc 6
- Mĩ Thuật 6
- Thể Dục 6
- Giáo Dục Công Dân 6
- Lớp 7
- Tiếng Anh 7
- Ngữ Văn 7
- Toán Học 7
- Khoa Học Tự Nhiên 7
- Vật Lí 7
- Sinh Học 7
- Lịch Sử 7
- Địa Lí 7
- Tin Học 7
- Công Nghệ 7
- Âm Nhạc 7
- Mĩ Thuật 7
- Thể Dục 7
- Giáo Dục Công Dân 7
- Lớp 8
- Tiếng Anh 8
- Ngữ Văn 8
- Toán Học 8
- Khoa Học Tự Nhiên 8
- Vật Lí 8
- Hóa Học 8
- Sinh Học 8
- Lịch Sử 8
- Địa Lí 8
- Tin Học 8
- Công Nghệ 8
- Âm Nhạc 8
- Mĩ Thuật 8
- Thể Dục 8
- Giáo Dục Công Dân 8
- Lớp 9
- Tiếng Anh 9
- Ngữ Văn 9
- Toán Học 9
- Khoa Học Tự Nhiên 9
- Vật Lí 9
- Hóa Học 9
- Sinh Học 9
- Lịch Sử 9
- Địa Lí 9
- Tin Học 9
- Công Nghệ 9
- Âm Nhạc 9
- Mĩ Thuật 9
- Thể Dục 9
- Giáo Dục Công Dân 9
- Trung Học Phổ Thông
- Lớp 10
- Tiếng Anh 10
- Ngữ Văn 10
- Toán Học 10
- Vật Lí 10
- Hóa Học 10
- Sinh Học 10
- Lịch Sử 10
- Địa Lí 10
- Tin Học 10
- Công Nghệ 10
- Thể Dục 10
- Giáo Dục Công Dân 10
- Lớp 11
- Tiếng Anh 11
- Ngữ Văn 11
- Toán Học 11
- Vật Lí 11
- Hóa Học 11
- Sinh Học 11
- Lịch Sử 11
- Địa Lí 11
- Tin Học 11
- Công Nghệ 11
- Thể Dục 11
- Giáo Dục Công Dân 11
- Lớp 12
- Tiếng Anh 12
- Ngữ Văn 12
- Toán Học 12
- Vật Lí 12
- Hóa Học 12
- Sinh Học 12
- Lịch Sử 12
- Địa Lí 12
- Tin Học 12
- Công Nghệ 12
- Thể Dục 12
- Giáo Dục Công Dân 12
Tài liệu đính kèm:
bai_tap_dai_so_9_chuong_i_can_bac_hai_can_bac_ba_tran_si_tun.doc
Nội dung text: Bài tập Đại số 9 - Chương I: Căn bậc hai - Căn bậc ba - Trần Sĩ Tùng
- Trần Sĩ Tùng Đại số 9 CHƯƠNG I: CĂN BẬC HAI - CĂN BẬC BA I. CĂN BẬC HAI - CĂN THỨC BẬC HAI 1. Căn bậc hai số học 2 Căn bậc hai của một số không âm a là số x sao cho x a . Số dương a có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là a , số âm kí hiệu là a . Số 0 có đúng một căn bậc hai là chính số 0, ta viết 0 0 . Với số dương a, số a đgl căn bậc hai số học của a. Số 0 cũng đgl căn bậc hai số học của 0 Với hai số không âm a, b, ta có: a 0 A Bài 1. Với giá trị nào của x thì mỗi căn thức sau có nghĩa: a) 3x b) 4 2x c) 3x 2 d) 3x 1 e) 9x 2 f) 6x 1 2 1 2 1 ĐS: a) x 0 b) x 2 c) x d) x e) x f) x 3 3 9 6 Bài 2. Với giá trị nào của x thì mỗi căn thức sau có nghĩa: x x x a) x 2 b) x 2 c) x 2 x 2 x 2 x2 4 1 4 2 d) e) f) 3 2x 2x 3 x 1 3 3 ĐS: a) x 2 b) x 2 c)x 2 d) x e) x f) x 1 2 2 Bài 3. Với giá trị nào của x thì mỗi căn thức sau có nghĩa: a) x2 1 b) 4x2 3 c) 9x2 6x 1 d) x2 2x 1 e) x 5 f) 2x2 1 ĐS: a) x R b)x R c) x R d) x 1 e) x 5 f) không có Bài 4. Với giá trị nào của x thì mỗi căn thức sau có nghĩa: a) 4 x2 b) x2 16 c) x2 3 d) x2 2x 3 e) x(x 2) f) x2 5x 6 Trang 1
- Đại số 9 Trần Sĩ Tùng ĐS: a) x 2 b) x 4 c) x 3 d) x 1 hoặc x 3 e) x 2 hoặc x 0 f) x 2 hoặc x 3 Bài 5. Với giá trị nào của x thì mỗi căn thức sau có nghĩa: a) x 1 b) x 1 3 c) 4 x 1 1 d) x 2 x 1 e) f) 9 12x 4x2 x 2 x 1 3 ĐS: a) x 1 b) x 2 hoặc x 4 c) x 4 d) x 1 e) x f) x 1 2 Dạng 2: TÍNH GIÁ TRỊ BIỂU THỨC 2 A neáu A 0 Áp dụng: A A A neáu A 0 Bài 1. Thực hiện các phép tính sau: 2 a) 0,8 ( 0,125)2 b) ( 2)6 c) 3 2 2 2 1 1 2 d) 2 2 3 e) f) 0,1 0,1 2 2 1 1 ĐS: a) 0,1 b) 8 c) 2 3 d) 3 2 2 e) f) 0,1 0,1 2 2 Bài 2. Thực hiện các phép tính sau: 2 2 2 2 a) 3 2 2 3 2 2 b) 5 2 6 5 2 6 2 2 2 2 c) 2 3 1 3 d) 3 2 1 2 2 2 2 2 e) 5 2 5 2 f) 2 1 2 5 ĐS: a) 6 b) 4 6 c) 1 d) 4 e) 2 5 f) 2 2 4 Bài 3. Thực hiện các phép tính sau: a) 5 2 6 5 2 6 b) 7 2 10 7 2 10 c) 4 2 3 4 2 3 d) 24 8 5 9 4 5 e) 17 12 2 9 4 2 f) 6 4 2 22 12 2 ĐS: a) 2 2 b) 2 2 c) 2 3 d) 3 5 4 Bài 4. Thực hiện các phép tính sau: a) 5 3 29 12 5 b) 13 30 2 9 4 2 c) 3 2 5 2 6 d) 5 13 4 3 3 13 4 3 e) 1 3 13 4 3 1 3 13 4 3 ĐS: Bài 5. Thực hiện các phép tính sau: a) ĐS: Trang 2
- Trần Sĩ Tùng Đại số 9 Dạng 3: RÚT GỌN BIỂU THỨC 2 A neáu A 0 Áp dụng: A A A neáu A 0 Chú ý: Xét các trường hợp A ≥ 0, A < 0 để bỏ dấu giá trị tuyệt đối. Bài 1. Rút gọn các biểu thức sau: a) x 3 x2 6x 9 (x 3) b) x2 4x 4 x2 ( 2 x 0) x2 2x 1 x2 4x 4 c) (x 1) d) x 2 (x 2) x 1 x 2 ĐS: a) 6 b) 2 c) 1 d) 1 x Bài 2. * Rút gọn các biểu thức sau: a) 1 4a 4a2 2a b) x 2y x2 4xy 4y2 c) x2 x4 8x2 16 x2 10x 25 x4 4x2 4 x 4 d) 2x 1 e) f) (x 4)2 2 x 5 x 2 x2 8x 16 ĐS: Bài 3. Cho biểu thức A x2 2 x2 1 x2 2 x2 1 . a) Với giá trị nào của x thì A có nghĩa? b) Tính A nếu x 2 . ĐS: a) x 1 hoặc x 1 b) A 2 Bài 4. Cho 3 số dương x,y,z thoả điều kiện: xy yz zx 1 . Tính: (1 y2)(1 z2) (1 z2)(1 x2) (1 x2)(1 y2) A x y z 1 x2 1 y2 1 z2 ĐS: A 2 . Chú ý: 1 y2 (xy yz zx) y2 (x y)(y z) , 1 z2 (y z)(z x) , 1 x2 (z x)(x y) Bài 5. Rút gọn các biểu thức sau: a) ĐS: Dạng 4: GIẢI PHƯƠNG TRÌNH Áp dụng:;;A2 A A2 B2 A B A 0 (hay B 0) B 0 A B A B 2 A B A B A 0 A 0 B 0 A B hay A B A B A B A B hay A B A 0 A B A B hay A B A B 0 B 0 A 0 A B 0 B 0 Trang 3
- Đại số 9 Trần Sĩ Tùng Bài 1. Giải các phương trình sau: a) (x 3)2 3 x b) 4x2 20x 25 2x 5 c) 1 12x 36x2 5 1 1 1 d) x 2 x 1 2 e) x 2 x 1 x 1 1 f) x2 x x 2 16 4 5 2 1 ĐS: a) x 3 b) x c) x 1; x d) x 2 e) x 2 f) x 2 3 4 Bài 2. Giải các phương trình sau: a) 2x 5 1 x b) x2 x 3 x c) 2x2 3 4x 3 d) 2x 1 x 1 e) x2 x 6 x 3 f) x2 x 3x 5 4 ĐS: a) x b) x 3 c) x 2 d) vô nghiệm e) x 3 f) vô nghiệm 3 Bài 3. Giải các phương trình sau: a) x2 x x b) 1 x2 x 1 c) x2 4x 3 x 2 d) x2 1 x2 1 0 e) x2 4 x 2 0 f) 1 2x2 x 1 ĐS: a) x 0 b) x 1 c) vô nghiệm d) x 1; x 2 e) x 2 f) vô nghiệm Bài 4. Giải các phương trình sau: a) x2 2x 1 x2 1 b) 4x2 4x 1 x 1 c) x4 2x2 1 x 1 1 d) x2 x x e) x4 8x2 16 2 x f) 9x2 6x 1 11 6 2 4 ĐS: a) x 1; x 2 b) vô nghiệm c) x 1 d) vô nghiệm e) x 2; x 3; x 1 2 2 2 4 f) x ; x 3 3 Bài 5. Giải các phương trình sau: a) 3x 1 x 1 b) x2 3 x 3 c) 9x2 12x 4 x2 d) x2 4x 4 4x2 12x 9 1 1 5 ĐS: a) x 0; x b) x 3; x 3 1; x 3 1 c) x 1; x d) x 1; x 2 2 3 Bài 6. Giải các phương trình sau: a) x2 1 x 1 0 b) x2 8x 16 x 2 0 c) 1 x2 x 1 0 d) x2 4 x2 4x 4 0 ĐS: a) x 1 b) vô nghiệm c) x 1 d) x 2 Bài 7. Giải các phương trình sau: a) b) ĐS: Trang 4
- Trần Sĩ Tùng Đại số 9 II. LIÊN HỆ GIỮA PHÉP KHAI PHƯƠNG VÀ PHÉP NHÂN, PHÉP CHIA Khai phương một tích: A.B A. B (A 0,B 0) Nhân các căn bậc hai: A. B A.B (A 0,B 0) A A Khai phương một thương: (A 0, B 0) B B A A Chia hai căn bậc hai: (A 0, B 0) B B Dạng 1: THỰC HIỆN PHÉP TÍNH Bài 1. Thực hiện các phép tính sau: 2 a) 12 2 27 3 75 9 48 b) 2 3( 27 2 48 75) c) 2 2 3 2 2 d) 1 3 2 1 3 2 e) 3 5 3 5 f) 11 7 11 7 ĐS: a) 13 3 b) 36 c) 11 4 6 d) 2 2 3 e) 10 f) 2 7 4 Bài 2. Thực hiện các phép tính sau: a) 2 3 2 3 b) 21 12 3 3 c) 6 2 3 2 3 2 d) 4 15 10 6 4 15 e) 13 160 53 4 90 f) 6 2 2 12 18 128 2 4 2 3 3 1 3 1 ĐS: Chú ý: 2 3 2 2 2 a) 2 b) 3 3 c) 2 d) 2 e) 4 5 f) 3 1 Bài 3. Thực hiện các phép tính sau: a) 2 5 125 80 605 b) 15 216 33 12 6 c) 8 3 2 25 12 4 192 3 3 d) 2 3 6 2 e) 3 5 3 5 f) 2 1 2 1 ĐS: a) 4 5 b) 6 c) 0 d) 2 e) 10 f) 14 Bài 4. Thực hiện các phép tính sau: 10 2 10 8 2 8 12 5 27 2 3 2 3 a) b) c) 5 2 1 5 18 48 30 162 2 3 2 3 2 3 5. 3 5 1 1 5 2 8 5 d) e) f) 10 2 2 2 3 2 2 3 2 5 4 6 ĐS: a) –2 b) c) 4 d) 1 2 Bài 5. Thực hiện các phép tính sau: a) A 12 3 7 12 3 7 b) B 4 10 2 5 4 10 2 5 c) C 3 5 3 5 2 2 2 ĐS: Chứng tỏ A 0,B 0,C 0 . Tính A ,B ,C A 6 ; B 5 1 , C 10 Trang 5
- Đại số 9 Trần Sĩ Tùng Dạng 2: RÚT GỌN BIỂU THỨC VÀ TÍNH GIÁ TRỊ BIỂU THỨC Bài 1. Rút gọn các biểu thức: 15 6 10 15 2 15 2 10 6 3 a) b) c) 35 14 8 12 2 5 2 10 3 6 2 3 6 8 16 x xy a a b b b a d) e) f) 2 3 4 y xy ab 1 3 5 3 2 ĐS: a) b) c) d) 1 2 . Tách 16 4 4 7 2 1 2 x a b e) f) y ab 1 Bài 2. Rút gọn các biểu thức sau: x x y y 2 x 2 x 1 a) x y b) (x 0) x y x 2 x 1 2 x 1 y 2 y 1 c) (x 1, y 1, y 0) y 1 (x 1)4 x 1 1 1 ĐS: a) xy b) c) nếu 0 y 1 và nếu y 1 x 1 1 x x 1 Bài 3. Rút gọn và tính: a 1 b 1 3 5 a) : với a 7,25;b 3,25 b) 15a2 8a 15 16 với a b 1 a 1 5 3 2 5 c) 10a2 4a 10 4 với a d) a2 2 a2 1 a2 2 a2 1 với a 5 5 2 a 1 5 ĐS: a) ; b) 4 c) 5 d) 2 b 1 3 Bài 4. a) ĐS: Trang 6
- Trần Sĩ Tùng Đại số 9 Dạng 3: GIẢI PHƯƠNG TRÌNH Bài 1. Giải các phương trình sau: 2x 3 2x 3 a) 2 b) 2 c) 4x2 9 2 2x 3 x 1 x 1 9x 7 x 5 1 d) 7x 5 e) 4x 20 3 9x 45 4 7x 5 9 3 1 3 7 ĐS: a) x b) vô nghiệm c) x ; x d) x 6 e) x 9 2 2 2 Bài 2. a) ĐS: Dạng 4: CHỨNG MINH BẤT ĐẲNG THỨC Bài 1. So sánh các số: a) 7 2 và 1 b) 8 5 và 7 6 c) 2005 2007 và 2006 ĐS: Bài 2. Cho các số không âm a, b, c. Chứng minh: a b 1 a) ab b) a b a b c) a b a b 2 2 a b a b d) a b c ab bc ca e) 2 2 ĐS: Bài 3. Tìm giá trị lớn nhất của các biểu thức sau: a) A x 2 4 x b) B 6 x x 2 c) C x 2 x ĐS: a) A 2 x 3 b) B 4 x 2 c) C 2 x 1 Bài 4. a) ĐS: Trang 7
- Đại số 9 Trần Sĩ Tùng III. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI 2 2 Với A ≥ 0 và B ≥ 0 thì A B A B + Với A 0 thì B B B B 2 C C( A B) Với A ≥ 0 và A B thì A B A B2 C C( A B) Với A ≥ 0, B ≥ 0 và A B thì A B A B Dạng 1: THỰC HIỆN PHÉP TÍNH Bài 1. Thực hiện các phép tính sau: a) 125 4 45 3 20 80 b) 99 18 11 11 3 22 27 48 2 75 9 49 25 c) 2 d) 3 4 9 5 16 8 2 18 5 5 5 5 1 1 e) 1 1 f) 1 5 1 5 3 2 3 2 7 3 5 2 ĐS: a) 5 5 b) 22 c) d) e) 4 f) 2 3 6 12 Bài 2. Thực hiện các phép tính sau: 7 5 6 2 7 6 5 2 2 5 a) b) 2 4 7 2 4 7 6 2 6 2 6 1 1 6 2 5 1 c) d) : 3 2 5 3 2 5 1 3 5 5 2 1 1 1 5 1 2 3 3 13 48 e) f) 3 3 2 3 12 6 6 2 32 7 20 17 6 30 3 ĐS: a) b) c) d) 3 e) f) 1 9 6 6 2 Bài 3. Thực hiện các phép tính sau: a) ĐS: Dạng 2: RÚT GỌN BIỂU THỨC Bài 1. Rút gọn và tính giá trị biểu thức: x 11 1 1 a2 2 a) A , x 23 12 3 b) B , a 2 x 2 3 2(1 a) 2(1 a) 1 a3 Trang 8
- Trần Sĩ Tùng Đại số 9 a4 4a2 3 1 1 c) C , a 3 2 d) D , h 3 4 2 a 12a 27 h 2 h 1 h 2 h 1 2x 2 x2 4 3 3 3 e) E , x 2( 3 1) f) F 1 a : 1 , a x2 4 x 2 1 a 1 a2 2 3 1 2 3 a2 1 ĐS: a) A x 2 3 2 3 b) B c) C 5 2 6 1 a a2 7 a2 9 2 h 1 1 3 1 d) D 2 2 e) E f) F 1 a 3 1 h 2 x 2 2 Bài 2. a) ĐS: Dạng 3: GIẢI PHƯƠNG TRÌNH Bài 1. Giải các phương trình sau: 1 3 x 1 a) x 1 4x 4 25x 25 2 0 b) x 1 9x 9 24 17 2 2 64 c) 9x2 18 2 x2 2 25x2 50 3 0 d) 2x x2 6x2 12x 7 0 e) (x 1)(x 4) 3 x2 5x 2 6 f) ĐS: a) x 2 b) 290 c) vô nghiệm d) x 1 2 2 e) x 2; x 7 Bài 2. Giải các phương trình sau: a) ĐS: Dạng 4: CHỨNG MINH ĐẲNG THỨC n n Bài 1. Cho biểu thức: Sn ( 2 1) ( 2 1) (với n nguyên dương). a) Tính S2; S3 . b) Chứng minh rằng: Với mọi m, n nguyên dương và m n , ta có: Sm n Sm.Sn Sm n c) Tính S4 . ĐS: a) S2 6; S3 10 2 b) Chứng minh Sm n Sm n SmSn c) S4 34 n n Bài 2. Cho biểu thức: Sn ( 3 2) ( 3 2) (với n nguyên dương). 2 a) Chứng minh rằng: S2n Sn 2 b) Tính S2, S4 . 2 2 2 HD: a) Sử dụng hằng đẳng thức a b (a b) 2ab b) S1 2 3; S2 10; S4 98 n n Bài 3. Cho biểu thức:Sn (2 3) (2 3) (với n nguyên dương). 3 a) Chứng minh rằng: S3n 3Sn Sn b) Tính S3, S9 . 3 3 3 3 HD: a) Sử dụng hằng đẳng thức a b (a b) 3ab(a b) . Chứng minh S3n Sn 3Sn . b) S1 4; S3 61; S9 226798 . Trang 9
- Đại số 9 Trần Sĩ Tùng Bài 4. a) HD: IV. RÚT GỌN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI Để rút gọn biểu thức có chứa căn thức bậc hai, ta cần biết vận dụng thích hợp các phép biến đổi đơn giản như: đưa thừa số ra ngoài dấu căn, đưa thừa số vào trong dấu căn, khử căn ở mẫu và trục căn thức ở mẫu để làm xuất hiện các căn thức bậc hai có cùng một biểu thức dưới dấu căn. x 1 2 x 2 5 x Bài 1. Cho biểu thức:. A x 2 x 2 4 x a) Tìm x để biểu thức A có nghĩa. b) Rút gọn biểu thức A. c) Tìm x để A 2 . 3 x ĐS: a) x 0, x 4 b) A c) x 16 x 2 x 2 x 2 (1 x)2 Bài 2. Cho biểu thức:. A . x 1 x 2 x 1 2 a) Rút gọn A nếu x 0, x 1 . b) Tìm x để A dương c) Tìm giá trị lớn nhất của A. 1 1 ĐS: a) A x x b) 0 x 1 c) max A khi x . 4 4 2 x 9 x 3 2 x 1 Bài 3. Cho biểu thức:. A x 5 x 6 x 2 3 x a) Rút gọn A. b) Tìm x để A 1 . x 1 ĐS: a) A b) 0 x 9; x 4 . x 3 a a 1 a a 1 1 a 1 a 1 Bài 4. Cho biểu thức:. A a a a a a a a 1 a 1 a) Rút gọn A. b) Tìm a để A 7 c) Tìm a để A 6 . 2a 2 a 2 1 ĐS: a) A b) a 4; a c) a 0,a 1 . a 4 15 x 11 3 x 2 2 x 3 Bài 5. Cho biểu thức:. A x 2 x 3 1 x 3 x 1 a) Rút gọn A. b) Tìm x để A . 2 2 5 x 1 ĐS: a) A b) x . x 3 121 x x 3 x 2 x 2 Bài 6. Cho biểu thức:. A 1 : 1 x x 2 3 x x 5 x 6 a) Rút gọn A. b) Tìm x để A 0 . x 2 ĐS: a) A b) 0 x 4 . 1 x a2 a 2a a Bài 7. Cho biểu thức:. A 1 a a 1 a Trang 10
- Trần Sĩ Tùng Đại số 9 a) Rút gọn A. b) Tìm a để A 2 . c) Tìm giá trị nhỏ nhất của A. 1 1 ĐS: a) A a a b) a 4 c) min A khi a . 4 4 2 a 1 a 1 a 1 Bài 8. Cho biểu thức:. A 2 2 a a 1 a 1 a) Rút gọn A. b) Tìm a để A 0 . c) Tìm a để A 2 . 1 a ĐS: a) A b) a 1 c) a 3 2 2 . a 2a a 1 2a a a a a a Bài 9. Cho biểu thức:. A 1 . 1 a 1 a a 2 a 1 6 2 a) Rút gọn A. b) Tìm a để A . c) Chứng minh rằng A . 1 6 3 ĐS: x 5 x 25 x x 3 x 5 Bài 10.Cho biểu thức:. A 1 : x 25 x 2 x 15 x 5 x 3 a) Rút gọn A. b) Tìm x để A 1 . 5 ĐS: a) A b) x 4; x 9; x 25 . 3 x 1 1 a 1 a 2 Bài 11.Cho biểu thức:. A : a 1 a a 2 a 1 1 a) Rút gọn A. b) Tìm a để A . 6 a 2 ĐS: a) A b) a 16 . 3 a x 1 x 1 2 x 1 Bài 12.Cho biểu thức:. A : x 1 x 1 x2 1 x 1 x 1 a) Rút gọn A. b) Tính giá trị của A khi x 3 8 . c) Tìm x để A 5 . 4x 1 ĐS: a) b) x 2 c) x ; x 5 . 1 x 2 5 y xy x y x y Bài 13. Cho biểu thức:. B x : x y xy y xy x xy a) Rút gọn B. b) Tính giá trị của B khi x 3, y 4 2 3 . ĐS: a) B y x b) B 1 . x3 2x 1 x Bài 14. Cho biểu thức:. B . xy 2y x x 2 xy 2 y 1 x a) Rút gọn B. b) Tìm tất cả các số nguyên dương x để y 625 và B 0,2 . x ĐS: a) B b) x 2;3;4 . y Trang 11
- Đại số 9 Trần Sĩ Tùng 1 1 2 1 1 x3 y x x y y3 Bài 15.Cho biểu thức:. B . : x y 3 3 x y x y x y xy a) Rút gọn B. b) Cho x.y 16 . Xác định x, y để B có giá trị nhỏ nhất. ĐS: 1 3 ab 1 3 ab a b Bài 16.Cho biểu thức: B . : a b a a b b a b a a b b a ab b a) Rút gọn B. b) Tính B khi a 16, b 4 . ĐS: 2 x y x3 y3 x y xy Bài 17.Cho biểu thức:. B : x y y x x y a) Rút gọn B. b) Chứng minh B 0 . ĐS: a 1 ab a a 1 ab a Bài 18.Cho biểu thức:. B 1 : 1 ab 1 ab 1 ab 1 ab 1 3 1 a) Rút gọn B. b) Tính giá trị của B nếu a 2 3 và b . 1 3 c) Tìm giá trị nhỏ nhất của B nếu a b 4 . ĐS: Bài 19.Cho biểu thức: a) ĐS: Trang 12
- Trần Sĩ Tùng Đại số 9 V. CĂN BẬC BA 3 Căn bậc ba của một số a là số x sao cho x a . Mọi số a đều có duy nhất một căn bậc ba. 3 3 3 3 3 3 A A A B A B A.B A. B Với B 0 ta có: 3 B 3 B Dạng 1: THỰC HIỆN PHÉP TÍNH 3 Áp dụng: 3 a3 a ; 3 a a và các hằng đẳng thức: (a b)3 a3 3a2b 3ab2 b3 , (a b)3 a3 3a2b 3ab2 b3 a3 b3 (a b)(a2 ab b2) , a3 b3 (a b)(a2 ab b2) Bài 1. Thực hiện các phép tính sau: a) 3 ( 2 1)(3 2 2) b) 3 (4 2 3)( 3 1) c) 3 64 3 125 3 216 3 3 d) 3 4 1 3 4 1 e) 3 9 3 6 3 4 3 3 3 2 ĐS: a) 2 1 b) 3 1 c) 3 d) 123 2 2 e) 5. Bài 2. Thực hiện các phép tính sau: a) A 3 2 5 3 2 5 b) B 3 9 4 5 3 9 4 5 125 125 c) C (2 3).3 26 15 3 d) D 3 3 9 3 3 9 27 27 3 3 1 5 3 5 ĐS: a) A 1 . Chú ý: 2 5 b) B 3 . Chú ý: 9 4 5 2 2 c) C 1 . Chú ý: 26 15 3 (2 3)3 125 125 3 3 5 3 d) D 1 . Đặt a 3 3 9 , b 3 3 9 a b 6, ab . Tính D . 27 27 3 Bài 3. Thực hiện các phép tính sau: a) ĐS: Dạng 2: CHỨNG MINH ĐẲNG THỨC 1 1 1 Bài 1. Chứng minh rằng, nếu: ax3 by3 cz3 và 1 x y z thì 3 ax2 by2 cz2 3 a 3 b 3 c . 3 3 3 t t t 3 HD: Đặt ax by cz t a ,b ,c . Chứng tỏ VT VP t . x3 y3 z3 Bài 2. Chứng minh đẳng thức: Trang 13
- Đại số 9 Trần Sĩ Tùng 2 2 2 1 3 3 3 3 3 3 x y z 33 xyz x 3 y z x 3 y 3 y z z x 2 HD: Khai triển vế phải và rút gọn ta được vế trái. Bài 3. a) Dạng 3: SO SÁNH HAI SỐ Áp dụng: A B 3 A 3 B Bài 1. So sánh: a) A 23 3 và B 3 23 b) A 33 và B 33 133 c) A 53 6 và B 63 5 ĐS: a) A B b) A B c) A B Bài 2. So sánh: a) A 3 20 14 2 3 20 14 2 và B 2 5 3 ĐS: a) A B . Chú ý: 20 14 2 2 2 . Bài 3. a) Dạng 4: GIẢI PHƯƠNG TRÌNH Áp dụng: 3 A B A B3 Bài 1. Giải các phương trình sau: a) 3 2x 1 3 b) 3 2 3x 2 c) 3 x 1 1 x d) 3 x3 9x2 x 3 e) 3 5 x x 5 10 ĐS: a) x 13 b) x c) x 0; x 1; x 2 d) x 1 e) x 5; x 4; x 6 3 Bài 2. Giải các phương trình sau: a) 3 x 2 x 1 3 b) 3 13 x 3 22 x 5 c) 3 x 1 x 3 ĐS: Sử dụng phương pháp đặt 2 ẩn phụ, đưa về hệ phương trình. a) x 3 b) x 14; x 5 c) x 7 Bài 3. Giải các phương trình sau: a) ĐS: Trang 14
- Trần Sĩ Tùng Đại số 9 BÀI TẬP ÔN CHƯƠNG I Bài 1. Rút gọn các biểu thức sau: 2 a) 20 45 3 18 72 b) ( 28 2 3 7) 7 84 c) 6 5 120 1 1 3 4 1 d) 2 200 : 2 2 2 5 8 ĐS: a) 15 2 5 b) 21 c) 11 d) 54 2 Bài 2. Rút gọn các biểu thức sau: 1 1 4 2 3 1 2 2 a) b) c) 5 3 5 3 6 2 2 3 6 3 3 2 3 ĐS: a) 3 b) c) 1 2 3 Bài 3. Chứng minh các đẳng thức sau: 2 a) 2 2 3 2 1 2 2 2 6 9 b) 2 3 2 3 6 4 4 c) 8 d) 11 6 2 11 6 2 6 2 2 2 5 2 5 ĐS: Biến đổi VT thành VP. Bài 4. So sánh (không dùng bảng số hay máy tính bỏ túi): a) 2 3 và 10 b) 2003 2005 và 2 2004 c) 5 3 và 3 5 ĐS: a) 2 3 10 b) 2003 2005 2 2004 c) 5 3 3 5 2x x 1 3 11x Bài 5. Cho biểu thức: A với x 3 . x 3 3 x x2 9 a) Rút gọn biểu thức A. b) Tìm x để A < 2. c) Tìm x nguyên để A nguyên. 3x ĐS: a) A b) 6 x 3; x 3 c) x { 6; 0; 2; 4; 6; 12} . x 3 x 1 x 1 x2 4x 1 x 2003 Bài 6. Cho biểu thức:. A . 2 x 1 x 1 x 1 x a) Tìm điều kiện để biểu thức A có nghĩa. b) Rút gọn A. c) Tìm x nguyên để A nhận giá trị nguyên. x 2003 ĐS: a) x 0; x 1 b) A c) x { 2003;2003} . x Bài 7. Tìm giá trị lớn nhất của biểu thức: 1 A x x 1 4 1 ĐS: max A khi x . 3 4 Bài 8. Tìm giá trị nhỏ nhất của biểu thức: A 1 6x 9x2 9x2 12x 4 Trang 15
- Đại số 9 Trần Sĩ Tùng 1 2 ĐS: Sử dụng tính chất a b a b , dấu "=" xảy ra ab 0 . min A 1 khi x . 3 3 Bài 9. Tìm x nguyên để biểu thức sau nhận giá trị nguyên: x 1 A x 3 4 ĐS: x {49;25;1;16;4} . Chú ý: A 1 . Để A Z thì x Z và x 3 là ước của 4. x 3 x 2 x 2 x 1 Bài 10. Cho biểu thức:. Q . x 2 x 1 x 1 x a) Rút gọn Q. b) Tìm số nguyên x để Q có giá trị nguyên. 2 ĐS: a) Q b) .x {2;3} x 1 1 1 a 1 Bài 11. Cho biểu thức M : với a 0,a 1 . a a a 1 a 2 a 1 a) Rút gọn biểu thức M. b) So sánh giá trị của M với 1. a 1 1 ĐS: a) M 1 b) M 1 . a a 1 x 3 2 x 2 Bài 12. Cho biểu thức P . x x 1 x 1 2 2 x 2x x a) Tìm điều kiện để P có nghĩa. b) Rút gọn biểu thức P. c) Tính giá trị của P với x 3 2 2 . 2 x ĐS: a) x 1; x 2; x 3 b) P c) P 2 1 . x 2x 1 x 1 x3 Bài 13. Cho biểu thức: B . x với x 0 và x 1 . 3 x x x x 1 1 1 a) Rút gọn B. b) Tìm x để B = 3. ĐS: a) B x 1 b) x 16 . 1 1 2 1 1 x3 y x x y y3 Bài 14. Cho biểu thức: A . : x y 3 3 x y x y x y xy với x 0,y 0 . a) Rút gọn A. b) Biết xy 16 . Tìm các giá trị của x, y để A có giá trị nhỏ nhất. Tìm giá trị đó. x y ĐS: a) b) .min A 1 x y 4 xy 1 x Bài 15. Cho biểu thức:. P x 1 x x 1 a) Rút gọn P. b) Tính giá trị của biểu thức P khi x . 2 x 1 ĐS: a) P b) .P 3 2 2 1 x Bài 16.Cho biểu thức: Trang 16
- Trần Sĩ Tùng Đại số 9 a) ĐS: Trang 17
Đề thi thử vào Lớp 10 THPT môn Toán - Phòng giáo dục và đào tạo Bắc Từ Liêm
Đề kiểm tra chất lượng cuối năm môn Toán Lớp 9 - Năm học 2014-2015
Đề thi chọn học sinh giỏi huyện môn Toán Lớp 9 - Năm học 2011-2012 - Phòng giáo dục và đào tạo Nghĩa Đàn (Có đáp án)
Đề thi tuyển sinh vào Lớp 10 THPT chuyên môn Toán (Chuyên) - Năm học 2017-2018 - Sở giáo dục và đào tạo Quảng Nam
Bài tập Hình học Lớp 9 - Nguyễn Văn A (Có lời giải)
Đề đề nghị thi tuyển sinh Lớp 10 THPT môn Toán - Đề III - Năm học 2020-2021 - Phòng giáo dục và đào tạo quận Bình Tân
Bộ đề thi thử vào Lớp 10 THPT môn Toán lần 1 - Năm học 2017-2018 - Trường THCS Mỹ Châu (Có đáp án)
Sáng kiến kinh nghiệm: Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn - Phan Thị Nguyệt
Đề kiểm tra thử học kì 1 môn Toán 9 - Năm học 2021-2022
Bộ đề ôn thi tuyển sinh vào Lớp 10 THPT và THPT chuyên môn Toán - Lại Văn Long
Bài tập giải hệ phương trình Lớp 9 (Có đáp án)
Tổng hợp 28 Đề thi Casio Lớp 9 cấp huyện (Có đáp án)
Bộ đề thi tuyển sinh vào Lớp 10 THPT môn Toán qua các năm - Sở giáo dục và đào tạo tỉnh Quảng Ninh (Có đáp án)
Đề khảo sát chất lượng đầu năm môn Toán Lớp 9 (Có đáp án)
Các phương pháp chứng minh Hình học Lớp 9 - Nguyễn Tiến
Đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2009-2010 - Sở giáo dục và đào tạo Hà Nội (Có đáp án)
46 Câu Vi-et thường gặp trong các đề thi vào Lớp 10
Đề kiểm tra học kỳ I môn Toán Lớp 9 - Năm học 2019-2020 - Sở giáo dục và đào tạo tỉnh Đồng Nai (Có đáp án)
Bộ đề kiểm tra học kì I môn Toán Lớp 9 - Sở giáo dục và đào tạo Đà Nẵng
Hệ thống kiến thức môn Toán Lớp 6, 7, 8, 9 và phương pháp chứng minh hình học
Copyright © 2025 DeThi.edu.vn
Từ khóa » Bài Tập Toán 9 Chương 1 Căn Bậc Hai
-
Giải Toán Lớp 9 Chương 1: Căn Bậc Hai | Hay Nhất Giải Bài Tập Toán 9
-
Giải Toán 9 Bài 1: Căn Bậc Hai
-
Đại Số 9: Bài Tập Tổng Hợp Chương 1: Căn Bậc Hai-Căn Bậc Ba
-
Giải Vở Bài Tập Toán 9 Chương 1: Căn Bậc Hai - Căn Bậc Ba - Trang 3
-
Toán 9 Bài 1: Căn Bậc Hai - Lý Thuyết Và Bài Tập Môn ...
-
Giải Bài Tập SGK Toán 9 Bài 1: Căn Bậc Hai
-
Bài Tập Chương 1: Căn Bậc Hai-Căn Bậc Ba Toán 9 Có Lời Giải
-
Toán 9 Bài 1: Căn Bậc Hai - HOC247
-
SBT Toán 9 Chương 1 - Căn Bậc Hai - Haylamdo
-
Giải SBT Toán 9: Ôn Tập Chương 1 - Căn Bậc Hai. Căn Bậc Ba
-
Các Dạng Bài Tập Toán 9 Chương 1 - Thu Trang
-
Giải Sách Bài Tập Toán Lớp 9 Hay Và Chi Tiết Nhất - MarvelVietnam
-
Tổng Hợp Các Dạng Bài Tập Đại Số Lớp 9 Ôn Tập Toán 9
-
Toán 9 Chương 1 Bài 1: Căn Bậc Hai - Học Hỏi Net