Bài Tập Toán Cao Cấp 2 - Ma Trận Nghịch đảo Và Phương Trình Ma Trận
Có thể bạn quan tâm
- Đề thi toán cao cấp 2
- Đại số tuyến tính
- Toán rời rạc
- Xác suất thống kê
- Phương trình vi phân
-
- Toán cao cấp
- Toán kinh tế
- HOT
- CEO.24: Bộ 240+ Tài Liệu Quản Trị Rủi...
- FORM.08: Bộ 130+ Biểu Mẫu Thống Kê...
- CMO.03: Bộ Tài Liệu Hệ Thống Quản Trị...
- CEO.29: Bộ Tài Liệu Hệ Thống Quản Trị...
- CEO.27: Bộ Tài Liệu Dành Cho StartUp...
- LV.26: Bộ 320 Luận Văn Thạc Sĩ Y...
- FORM.04: Bộ 240+ Biểu Mẫu Chứng Từ Kế...
- TL.01: Bộ Tiểu Luận Triết Học
- FORM.07: Bộ 125+ Biểu Mẫu Báo Cáo...
Chia sẻ: Tran Dung | Ngày: | Loại File: PDF | Số trang:7
Thêm vào BST Báo xấu 899 lượt xem 96 download Download Vui lòng tải xuống để xem tài liệu đầy đủTham khảo tài liệu 'bài tập toán cao cấp 2 - ma trận nghịch đảo và phương trình ma trận', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
AMBIENT/ Chủ đề:- Bài tập ma trận
- Toán ma trận
- Bài tập ma trận định thức
- Bài tập ma trận nghịch đảo
- Tính toán ma trận
- Bài tập đại số
Bình luận(0) Đăng nhập để gửi bình luận!
Đăng nhập để gửi bình luận! LưuNội dung Text: Bài tập toán cao cấp 2 - Ma trận nghịch đảo và phương trình ma trận
- LỜI GIẢI MỘT SỐ BÀI TẬP TOÁN CAO CẤP 2 Lời giải một số bài tập trong tài liệu này dùng để tham khảo. Có một số bài tập do một số sinh viên giải. Khi học, sinh viên cần lựa chọn những phương pháp phù hợp và đơn giản hơn. Chúc anh chị em sinh viên học tập tốt BÀI TẬP VỀ MA TRẬN NGHỊCH ĐẢO VÀ PHƯƠNG TRÌNH MA TRẬN Bài 1: Tìm ma trận nghịch đảo của các ma trân sau: 1) A 3 4 5 7 Ta có: 1 5 3 4 1 0 h1 3 3 4 1 0 h1 h2 4 1 3 h23 1 0 AI 0 1 5 1 5 7 0 1 3 3 3 3 0 1 5 3 4 h2 h1 1 0 7 4 A1 7 4 3 0 1 5 3 5 3
- 2) A 1 2 4 9 Ta có: 1 1 1 2 1 d b 1 9 2 9 2 A 1.(9) (2).4 4 9 ad bc c a 4 1 4 1 3 4 5 3) A 2 3 1 3 5 1 Ta có: 3 4 5 1 0 0 1 1 4 1 1 0 A I 2 3 1 0 1 0 2 3 1 0 1 0 h2(-1) h1 3 5 1 0 0 1 3 5 1 0 0 1 1 1 4 1 1 0 1 1 4 1 1 0 h2(-2) h3 h13h3 0 1 7 2 3 0 0 1 7 2 3 0 h1 2 h2 0 2 13 3 3 1 0 0 1 1 3 1 1 1 4 1 1 0 1 1 0 3 11 4 0 1 7 2 3 0 h34h1 0 1 0 5 18 7 h2(-1) h3 7 h2 0 0 1 1 3 1 0 0 1 1 3 1 1 0 0 8 29 11 h2h1 0 1 0 5 18 7 0 0 1 1 3 1 8 29 11 Vậy ma trận A là ma trận khả nghịch và A-1 = 5 18 7 1 3 1
- 2 7 3 4) A 3 9 4 1 5 3 Ta có: 2 7 3 1 0 0 1 5 3 0 0 1 A I 3 9 4 0 1 0 3 9 4 0 1 0 h3h1 1 5 3 0 0 1 2 7 3 1 0 0 1 5 3 0 0 1 h13h2 1 5 3 0 0 1 h12h3 h3h2 0 6 5 0 1 3 0 3 3 1 0 2 0 3 3 1 0 2 0 6 5 0 1 3 1 5 3 0 0 1 h2 1 1 5 3 0 0 1 3 1 2 h2(-2)h3 0 3 3 1 0 2 0 1 1 0 3 3 0 0 1 2 1 1 0 0 1 2 1 1 7 1 1 5 0 6 3 2 1 0 0 2 3 3 h31 h2 h33h1 0 1 0 5 1 1 0 1 0 5 1 1 h2(-5)h1 3 3 3 3 0 0 1 2 1 1 0 0 1 2 1 1 7 1 2 3 3 5 1 A1 1 3 3 2 1 1
- 1 2 2 5) A 2 1 2 2 2 1 Ta có: 1 2 2 1 0 0 h1 2 h 2 1 2 2 1 0 0 h1 2 h 3 A 2 1 2 0 1 0 0 3 6 2 1 0 2 2 1 0 0 1 0 6 3 2 0 1 1 1 2 2 h 2 3 1 0 0 1 2 2 1 0 0 1 h 3 2 1 0 3 6 2 1 0 0 1 2 0 h 2 2 h 3 9 3 3 0 0 9 2 2 1 2 2 1 0 0 1 9 9 9 5 4 2 1 2 2 1 2 0 1 0 0 9 9 9 9 9 9 h 3 2 h 2 2 1 2 h 2 2 h1 2 1 2 0 1 0 h 3 2 h1 0 1 0 9 9 9 9 9 9 0 0 1 2 2 1 0 0 1 2 2 1 9 9 9 9 9 9 1 2 2 9 9 9 2 1 2 A 1 9 9 9 2 2 1 9 9 9
- Bài 2 Giải các phương trình ma trận sau 1 2 3 5 1) X 5 9 3 4 1 2 3 5 Đặt A ;B 5 9 3 4 Ta có: AX B X A1 B 1 2 1 1 1 2 1 d b 1 4 2 A 3 1 3 4 ad bc c a 1.4 2.3 3 1 2 2 2 1 3 5 1 1 X 3 1 5 9 2 3 2 2 3 2 1 2 2) X 5 4 5 6 3 2 1 2 Đặt A ; B 5 6 5 4 Ta có: XA B X BA1 1 2 1 1 3 2 1 d b 1 4 2 A 5 3 5 4 ad bc c a 3.(4) 5.(2) 5 3 2 2 2 1 1 2 3 2 X 5 3 5 6 5 4 2 2
- 1 2 3 1 3 0 3 2 4 X 10 2 7 3) 2 1 0 10 7 8 Giải: 1 2 3 1 3 0 3 2 4 ; B 10 2 7 Đặt A 2 1 0 10 7 8 Ta có: AX B X A1 B 4 3 2 Bằng phương pháp tìm ma trận nghịch đảo ta có: A 8 6 5 1 7 5 4 4 3 2 1 3 0 6 4 5 Suy ra: X 8 6 5 10 2 7 2 1 2 7 5 4 10 7 8 3 3 3 5 3 1 8 3 0 4) X 1 3 2 5 9 0 5 2 1 2 15 0 5 3 1 8 3 0 1 3 2 ; B 5 9 0 Đặt A 5 2 1 2 15 0 Ta có: XA B X BA1 Bằng phương pháp tìm ma trận nghịch đảo ta có:
- 1 1 3 19 19 19 1 A 9 10 11 19 19 19 13 25 18 19 19 19 Suy ra: 1 1 3 19 19 19 8 3 0 1 2 3 1 9 10 11 X BA A 5 9 0 4 5 6 19 19 19 2 15 0 7 8 9 13 25 18 19 19 19 3 1 5 6 14 16 5) X 5 2 7 8 9 10 3 1 5 6 14 16 Đặt A ; B 7 8 ; C 9 10 5 2 Ta có: AXB C X A1CB 1 1 1 3 1 2 1 A 5 2 5 3 1 4 3 1 5 6 B 7 5 7 8 2 2 Suy ra: 4 3 4 3 2 1 14 16 19 22 1 2 X 7 5 7 5 5 3 9 10 43 50 3 4 2 2 2 2
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài tập toán cao cấp - Phần 2
11 p | 1430 | 750
-
Bài tập toán cao cấp 2 - Bài tập ma trận giải và biện luận theo tham số
10 p | 2690 | 297
-
Tổng hợp đề thi toán cao cấp 2 hay
1 p | 3257 | 187
-
Đề thi Toán cao cấp 2 - Đề số 09
4 p | 748 | 27
-
Bài tập toán cao cấp-Chương 2
5 p | 958 | 26
-
Đề kiểm tra thử: Toán cao cấp 2
3 p | 250 | 25
-
Đề thi môn Toán cao cấp (Dành cho hệ Văn bằng 2) - ĐH Kinh tế TP. HCM
1 p | 292 | 24
-
Đề thi môn: Toán cao cấp - Đề số 5 - ĐH Kinh tế TP. HCM
1 p | 230 | 19
-
Đề thi môn: Toán cao cấp - Đề 3 - ĐH Kinh tế TP. HCM
1 p | 124 | 8
-
Đề thi môn: Toán cao cấp - Đề 2 - ĐH Kinh tế TP. HCM
1 p | 154 | 8
-
Đề thi môn: Toán cao cấp - Đề số 4 - ĐH Kinh tế TP. HCM
1 p | 149 | 7
-
Bài giảng Toán cao cấp - Bài 2: Đạo hàm và vi phân
20 p | 68 | 5
-
Đề thi kết thúc học phần Toán cao cấp 2 - Trường Đại học Ngân hàng TP. HCM
1 p | 34 | 3
-
Đề thi kết thúc học phần học kì 1 môn Toán cao cấp 2 năm 2019-2020 có đáp án - Trường ĐH Đồng Tháp
3 p | 13 | 3
-
Bài giảng Toán cao cấp 1: Chương 6.2 - TS. Trịnh Thị Hường
8 p | 22 | 3
-
Đề thi kết thúc học phần học kỳ I năm học 2018-2019 môn Toán cao cấp 2 - ĐH Ngân hàng TP.HCM
1 p | 56 | 2
-
Đề thi kết thúc học phần học kỳ II năm học 2018-2019 môn Toán cao cấp 2 - ĐH Ngân hàng TP.HCM
1 p | 37 | 2
- Hãy cho chúng tôi biết lý do bạn muốn thông báo. Chúng tôi sẽ khắc phục vấn đề này trong thời gian ngắn nhất.
- Không hoạt động
- Có nội dung khiêu dâm
- Có nội dung chính trị, phản động.
- Spam
- Vi phạm bản quyền.
- Nội dung không đúng tiêu đề.
- Về chúng tôi
- Quy định bảo mật
- Thỏa thuận sử dụng
- Quy chế hoạt động
- Hướng dẫn sử dụng
- Upload tài liệu
- Hỏi và đáp
- Liên hệ
- Hỗ trợ trực tuyến
- Liên hệ quảng cáo
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
Giấy phép Mạng Xã Hội số: 670/GP-BTTTT cấp ngày 30/11/2015 Copyright © 2022-2032 TaiLieu.VN. All rights reserved.
Đang xử lý... Đồng bộ tài khoản Login thành công! AMBIENTTừ khóa » Bài Tập Tìm Ma Trận Nghịch đảo Cấp 3
-
Bài Tập Ma Trận Nghịch đảo Và Lời Giải- Đại Số Và Hình Học Giải Tích
-
Giải Bài Tập Ma Trận Nghịch đảo - 123doc
-
TÌM MA TRẬN NGHỊCH ĐẢO CẤP 3 - BÀI TẬP - TS TRẦN HOAN
-
[PDF] BÀI TẬP ĐẠI SỐ TUYẾN TÍNH 1. MA TRẬN. 1.1. Cho A ... - FITA-VNUA
-
Cách để Tìm Nghịch đảo Của Ma Trận 3x3 - WikiHow
-
Đại Số Tuyến Tính - Giải Bài Tập Về Ma Trận Nghịch đảo - Giáo Án
-
Bài Tập Ma Trận Nghịch đảo.pdf (.docx) | Tải Miễn Phí
-
Cách Tìm Ma Trận Nghịch đảo 2x2, 3x3, 4x4 Chính Xác 100%
-
TOÁN CAO CẤP 1. BÀI TẬP CÓ LỜI GIẢI. BÀI MA TRẬN NGHỊCH ...
-
Bài 5 Bài Tập định Thức - Ma Trận Nghịch đảo[Lời Giải + Đáp án]
-
Video Cách Tính Ma Trận Nghịch đảo - Mitadoor Đồng Nai
-
Bài Giảng Ma Trận Nghịch đảo - Tài Liệu, Ebook, Giáo Trình
-
[PDF] Chương 2. MA TRẬN – ĐỊNH THỨC - AGU Staff Zone
-
Ma Trận Nghịch đảo Là Gì? Cách Tìm Ma Trận Nghịch đảo 2×2, 3×3, 4×4