[Bài Toán] Đa Thức, Công Thức Nội Suy Lagrange | Huy Cao's Blog

Bài toán : Cho P(x) = a{x}^{3} + b{x}^{2} + cx + d thỏa mãn \left|P(x) \right| \leq 1 với mọi \left|x \right| \leq 1. Chứng minh rằng  \left|a \right| + \left|b \right| + \left|c \right| + \left|d\right| \leq 7

Lời giải :

Áp dụng công thức nội suy Lagrange cho P(x) với bốn số -1,1,\frac{-1}{2},\dfrac{1}{2} :

P(x)=P(-1).\dfrac{(x-1)(x-\frac{1}{2})(x+\frac{1}{2})}{(-1-1)(-1-\frac{1}{2})(-1+\frac{1}{2})}+P(1).\dfrac{(x+1)(x-\frac{1}{2})(x+\frac{1}{2})}{(1+1)(1-\frac{1}{2})(1+\frac{1}{2})}+P\left ( \dfrac{1}{2} \right ).\dfrac{(x-1)(x+1)(x+\frac{1}{2})}{(\frac{1}{2}-1)(\frac{1}{2}+1)(\frac{1}{2}+\frac{1}{2})}+P\left ( \dfrac{-1}{2} \right ).\dfrac{(x-\frac{1}{2})(x-1)(x+1)}{(-\frac{1}{2}-\frac{1}{2})(-\frac{1}{2}-1)(-\frac{1}{2}+1)}=P(-1).\dfrac{(x-1)(4x^{2}-1)}{-6}+P(1).\dfrac{(x+1)(4x^{2}-1)}{6}+P\left ( \dfrac{1}{2} \right ).\dfrac{(4x+2)(x^{2}-1)}{-3}+P\left ( -\dfrac{1}{2} \right ).\dfrac{(4x-2)(x^{2}-1)}{3}=\left [ \dfrac{-2}{3}P(-1)+\dfrac{2}{3}P(1)-\dfrac{4}{3}P\left ( \dfrac{1}{2} \right )+\dfrac{4}{3}P\left ( -\dfrac{1}{2} \right ) \right ]x^{3}+\left [ \dfrac{2}{3}P(-1)+\dfrac{2}{3}P(1)-\dfrac{2}{3}P\left ( \dfrac{1}{2} \right )-\dfrac{2}{3}P\left ( -\dfrac{1}{2} \right ) \right ]x^{2}+\left [ \dfrac{1}{6}P(-1)-\dfrac{1}{6}P(1)+\dfrac{4}{3}P\left ( \dfrac{1}{2} \right )-\dfrac{4}{3}P\left ( -\dfrac{1}{2} \right ) \right ]x+\left [ -\dfrac{1}{6}P(-1)-\dfrac{1}{6}P(1)+\dfrac{2}{3}P\left ( \dfrac{1}{2} \right )+\dfrac{2}{3}P\left ( -\dfrac{1}{2} \right ) \right ]

Đồng nhất hệ số :

\bigstar a= \dfrac{-2}{3}P(-1)+\dfrac{2}{3}P(1)-\dfrac{4}{3}P\left ( \dfrac{1}{2} \right )+\dfrac{4}{3}P\left ( -\dfrac{1}{2} \right ) \Rightarrow \left | a \right |\leq \left | \dfrac{2}{3}P(1)-\dfrac{2}{3}P(-1) \right |+\left | \dfrac{4}{3}P\left ( -\dfrac{1}{2} \right )-\dfrac{4}{3}P\left ( \dfrac{1}{2} \right ) \right |

\bigstar b=\dfrac{2}{3}P(-1)+\dfrac{2}{3}P(1)-\dfrac{2}{3}P\left ( \dfrac{1}{2} \right )-\dfrac{2}{3}P\left ( -\dfrac{1}{2} \right ) \Rightarrow \left | b \right |\leq \left | \dfrac{2}{3}P(1)+\dfrac{2}{3}P(-1) \right |+\left | \dfrac{2}{3}P\left ( \dfrac{1}{2} \right )+\dfrac{2}{3}P\left ( -\dfrac{1}{2} \right ) \right |

\bigstar c= \dfrac{1}{6}P(-1)-\dfrac{1}{6}P(1)+\dfrac{4}{3}P\left ( \dfrac{1}{2} \right )-\dfrac{4}{3}P\left ( -\dfrac{1}{2} \right ) \Rightarrow \left | c \right |= \dfrac{1}{6}P(-1)-\dfrac{1}{6}P(1)+\dfrac{4}{3}P\left ( \dfrac{1}{2} \right )-\dfrac{4}{3}P\left ( -\dfrac{1}{2} \right )\leq \left | \dfrac{1}{6}P(-1) -\dfrac{1}{6}P(1)\right |+2.\left | \dfrac{2}{3}P\left ( \dfrac{1}{2} \right ) -\dfrac{2}{3}P\left ( -\dfrac{1}{2} \right )\right |

\bigstar d=-\dfrac{1}{6}P(-1)-\dfrac{1}{6}P(1)+\dfrac{2}{3}P\left ( \dfrac{1}{2} \right )+\dfrac{2}{3}P\left ( -\dfrac{1}{2} \right ) \Rightarrow \left | d \right |=-\dfrac{1}{6}P(-1)-\dfrac{1}{6}P(1)+\dfrac{2}{3}P\left ( \dfrac{1}{2} \right )+\dfrac{2}{3}P\left ( -\dfrac{1}{2} \right )\leq \left | \dfrac{1}{6}P(-1)+\dfrac{1}{6}P(1) \right |+\left | \dfrac{2}{3}P\left ( \dfrac{1}{2} \right )+\dfrac{2}{3}P\left ( -\dfrac{1}{2} \right ) \right |

Từ đó chú đến bất đẳng thức \left | a+b \right |+\left | a-b \right |\leq max\left \{ 2\left | a \right |,2\left | b \right | \right \} và \left | P(1) \right |\leq 1,\left | P(-1) \right |\leq 1,\left | P\left ( \dfrac{1}{2} \right ) \right |\leq 1,\left | P\left ( -\dfrac{1}{2} \right ) \right |\leq 1, ta có :

\left | a \right |+\left | b \right |+\left | c \right |+\left | d \right |\leq 3.max\left \{ 2\left | \dfrac{2}{3}P(-1) \right |,2\left | \dfrac{2}{3}P(1) \right | \right \}+max\left \{ 2\left | \dfrac{1}{6}P(-1) \right |,2\left | \dfrac{1}{6}P(1) \right | \right \}+ \left | \dfrac{4}{3}P\left ( -\dfrac{1}{2} \right ) -\dfrac{4}{3}P\left ( \dfrac{1}{2} \right )\right | \leq 3.2.\dfrac{2}{3}.1+2.\dfrac{1}{6}.2.\dfrac{4}{3}=7

Đây là điều phải chứng minh.

Share this:

  • X
  • Facebook
Like Loading...

Related

Từ khóa » Công Thức Lagrange