Bảng Công Thức Nguyên Hàm đầy đủ, Chi Tiết - Toán Lớp 12
Có thể bạn quan tâm
- Ra mắt Sách 20 đề THPT quốc gia form 2025 toán, văn, anh.... (từ 80k/1 cuốn)
Bài viết Bảng công thức nguyên hàm với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Bảng công thức nguyên hàm.
- Định nghĩa, công thức Nguyên hàm
- Một số phương pháp tìm nguyên hàm
Bảng công thức nguyên hàm đầy đủ, chi tiết
Bài giảng: Cách làm bài tập nguyên hàm và phương pháp tìm nguyên hàm của hàm số cực nhanh - Cô Nguyễn Phương Anh (Giáo viên VietJack)
Quảng cáoI. Định nghĩa, công thức Nguyên hàm
1. Định nghĩa
Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K.
Kí hiệu: ∫ f(x)dx = F(x) + C.
Định lí 1:
1) Nếu F(x) là một nguyên hàm của f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.
2) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.
Do đó F(x) + C; C ∈ R là họ tất cả các nguyên hàm của f(x) trên K.
2. Tính chất của nguyên hàm
• (∫ f(x)dx)' = f(x) và ∫ f'(x)dx = f(x) + C.
• Nếu F(x) có đạo hàm thì: ∫d(F(x)) = F(x) + C).
• ∫ kf(x)dx = k∫ f(x)dx với k là hằng số khác 0.
• ∫[f(x) ± g(x)]dx = ∫ f(x)dx ± ∫g(x)dx.
3. Sự tồn tại của nguyên hàm
Định lí:
Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.
4. Bảng nguyên hàm các hàm số thường gặp
II. Một số phương pháp tìm nguyên hàm
Quảng cáo1. Phương pháp đổi biến
1.1. Đổi biến dạng 1
a. Định nghĩa.
Cho hàm số u = u(x) có đạo hàm liên tục trên K và hàm số y = f(u) liên tục sao cho f[u(x)] xác định trên K. Khi đó, nếu F là một nguyên hàm của f, tức là: ∫ f(u)du = F(u) + C thì:
∫ f[u(x)]u'(x)dx = F[u(x)] + C
b. Phương pháp giải
Bước 1: Chọn t = φ(x). Trong đó φ(x) là hàm số mà ta chọn thích hợp.
Bước 2: Tính vi phân hai vế: dt = φ'(t)dt.
Bước 3: Biểu thị: f(x)dx = f[φ(t)]φ'(t)dt = g(t)dt.
Bước 4: Khi đó: I = ∫ f(x)dx = ∫g(t)dt = G(t) + C.
1.2. Phương pháp đổi biến loại 2
a. Định nghĩa:
Cho hàm số f(x) liên tục trên K; x = φ(t) là một hàm số xác định, liên tục trên K và có đạo hàm là φ'(t). Khi đó, ta có:
∫ f(x)dx = ∫ f[φ(t)].φ'(t)dt
b. Phương pháp chung
Bước 1: Chọn x = φ( t), trong đó φ(t) là hàm số mà ta chọn thích hợp.
Bước 2: Lấy vi phân hai vế: dx = φ'(t)dt.
Bước 3: Biến đổi: f(x)dx = f[φ(t)]φ'(t)dt = g(t)dt.
Bước 4: Khi đó tính: ∫ f(x)dx = ∫g(t)dt = G(t) + C.
c. Các dấu hiệu đổi biến thường gặp
Quảng cáo2. Phương pháp nguyên hàm từng phần
a. Định lí
Nếu u(x), v(x) là hai hàm số có đạo hàm liên tục trên K:
∫u(x).v'(x)dx = u(x).v(x) - ∫v(x).u'(x)dx
Hay ∫udv = uv - ∫vdu
(với du = u'(x)dx, dv = v'(x)dx)
b. Phương pháp chung
Bước 1: Ta biến đổi tích phân ban đầu về dạng: I = ∫ f(x)dx = ∫ f1(x).f2(x)dx
Bước 2: Đặt:
Bước 3: Khi đó: ∫u.dv = u.v - ∫v.du
c. Các dạng thường gặp
Dạng 1
Dạng 2
Dạng 3
Bằng phương pháp tương tự ta tính được sau đó thay vào I.
Quảng cáoXem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Nguyên hàm của hàm đa thức, hàm phân thức
- Nguyên hàm của hàm số mũ, hàm số logarit
- Nguyên hàm của hàm số lượng giác
- Tìm nguyên hàm của hàm đa thức bằng phương pháp đổi biến số
- Tìm nguyên hàm của hàm phân thức bằng phương pháp đổi biến số
- Tìm nguyên hàm của hàm số mũ, logarit bằng phương pháp đổi biến số
- Tìm nguyên hàm của hàm số lượng giác bằng phương pháp đổi biến số
- Tìm nguyên hàm của hàm chứa căn thức bằng phương pháp đổi biến số
- Tìm nguyên hàm của hàm lượng giác bằng phương pháp nguyên hàm từng phần
- Tìm nguyên hàm của hàm số mũ, logarit bằng phương pháp nguyên hàm từng phần
- Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Sổ tay toán lý hóa 12 (29k/ 1 cuốn)
- Tổng ôn tốt nghiệp 12 toán, sử, địa, kinh tế pháp luật.... (80k/1 cuốn)
- 30 đề Đánh giá năng lực đại học quốc gia Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7)
ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12
Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Từ khóa » Nguyên Hàm Của 1/(ax+b)^2
-
Công Thức Nguyên Hàm, Bảng Nguyên Hàm đầy đủ & Mở Rộng
-
Công Thức Giải Nhanh Nguyên Hàm - Tích Phân | Tăng Giáp
-
Bảng Nguyên Hàm Các Hàm Số Thường Gặp (Đầy Đủ) - Mathvn
-
Tìm Nguyên Hàm 1/(a-bx) | Mathway
-
Bảng đầy đủ Nhất CÔNG THỨC TÍNH NGUYÊN HÀM
-
Công Thức Nguyên Hàm
-
Bảng Nguyên Hàm Và Các Công Thức Bảng Nguyên Hàm Cần Nhớ
-
Bảng Công Thức Tích Phân đầy đủ - 123doc
-
Bảng Các Công Thức Nguyên Hàm Từ Căn Bản Tới Nâng Cao - Công ...
-
Nguyên Hàm Của 1/(Ax^2+Bx+C) - YouTube
-
[PDF] Nguyên Hàm, Tích Phân
-
Tìm Một Nguyên Hàm F(x) Của Hàm Số F(x)=ax +b/x^2, Biết Rằng
-
Bảng Công Thức Nguyên Hàm đầy đủ Và Mở Rộng Lớp 12