Bất đẳng Thức Cô Si - Chuyên đề Toán Lớp 9 Luyện Thi Vào Lớp 10
Có thể bạn quan tâm
Chuyên đề luyện thi vào 10: Bất đẳng thức Cauchy
- I. Một số kiến thức cần nhớ về bất đẳng thức Cauchy (Cô si)
- II. Bài tập về bất đẳng thức Cô si lớp 9
- III. Bài tập về bất đẳng thức Cô si
Bất đẳng thức Cô si được VnDoc đăng tải sau đây bao gồm một số kiến thức cần nhớ về bất đẳng thức Cauchy, kèm theo đó là các bài tập cơ bản và nâng cao về bất đẳng thức Cô si, cho các em ôn tập, chuẩn bị kĩ lưỡng cho kì thi quan trọng sắp tới.
Bản quyền thuộc về VnDoc.Nghiêm cấm mọi hình thức sao chép nhằm mục đích thương mại.
I. Một số kiến thức cần nhớ về bất đẳng thức Cauchy (Cô si)
1. Phát biểu
+ Bất đẳng thức Cô si của n số thực không âm được phát biểu như sau: Trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng và dấu bằng xảy ra khi và chỉ khi n số đó bằng nhau.
+ Nghĩa là:
- Bất đẳng thức Cô si với 2 số thực không âm:
\(\frac{{a + b}}{2} \ge \sqrt {ab}\)
Dấu “=” xảy ra khi và chỉ khi a = b
- Bất đẳng thức Cô si với n số thực không âm:
\(\frac{{{x_1} + {x_2} + ... + {x_n}}}{n} \ge \sqrt[n]{{{x_1}{x_2}...{x_n}}}\)
Dấu “=” xảy ra khi và chỉ khi \({x_1} = {x_2} = ... = {x_n}\)
2. Chứng minh bất đẳng thức Cauchy (Cô si) với 2 số thực a và b không âm
+ Với a = 0, b = 0 thì bất đẳng thức luôn luôn đúng. Với a, b > 0, ta chứng minh:
\(\frac{{a + b}}{2} \ge \sqrt {ab}\)
\(\begin{array}{l} \Leftrightarrow a + b \ge 2\sqrt {ab} \\ \Leftrightarrow a - 2\sqrt {ab} + b \ge 0\\ \Leftrightarrow {\left( {\sqrt a - \sqrt b } \right)^2} \ge 0 \end{array}\)
Suy ra bất đẳng thức luôn đúng với mọi a, b không âm
3. Hệ quả của bất đẳng thức Cauchy (Cô si)
+ Hệ quả 1: nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau
+ Hệ quả 2: nếu tích hai số dương không đổi thì tổng của của hai số này nhỏ nhất khi hai số đó bằng nhau
II. Bài tập về bất đẳng thức Cô si lớp 9
Bài 1: Tìm giá trị nhỏ nhất của biểu thức \(A = x + \frac{7}{x}\) với x > 0
Lời giải:
Áp dụng bất đẳng thức Cô si cho hai số x > 0 và ta có:
\(x + \frac{7}{x} \ge 2\sqrt {x.\frac{7}{x}} = 2\sqrt 7\)
Dấu “=” xảy ra khi và chỉ khi \(x = \frac{7}{x} \Leftrightarrow {x^2} = 7 \Leftrightarrow x = \sqrt 7\)(do x > 0)
Vậy min\(A = 2\sqrt 7 \Leftrightarrow x = \sqrt 7\)
Bài 2: Cho x > 0, y > 0 thỏa mãn điều kiện \(\frac{1}{x} + \frac{1}{y} = \frac{1}{2}\). Tìm giá trị lớn nhất của biểu thức \(A = \sqrt x + \sqrt y\)
Lời giải:
Áp dụng bất đẳng thức Cô si cho hai số x > 0, y > 0 ta có:
\(\frac{1}{x} + \frac{1}{y} \ge 2\sqrt {\frac{1}{x}.\frac{1}{y}}\)
\(\Leftrightarrow \frac{1}{2} \ge \frac{2}{{\sqrt {xy} }} \Leftrightarrow \sqrt {xy} \ge 4\)
Lại có, áp dụng bất đẳng thức Cô si cho hai số x > 0, y > 0 ta có:
\(\sqrt x + \sqrt y \ge 2\sqrt {\sqrt {xy} } = 2\sqrt 4 = 4\)
Dấu “=” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l} x = y\\ \frac{1}{x} + \frac{1}{y} = \frac{1}{2} \end{array} \right. \Leftrightarrow x = y = 4\)
Vậy minA = 4 khi và chỉ khi x = y = 4
Bài 3: Chứng minh với ba số a, b, c không âm thỏa mãn a + b + c = 3 thì:
\(\frac{a}{{b + c}} + \frac{b}{{c + a}} + \frac{c}{{a + b}} \ge \frac{3}{2}\)
Nhận xét: Bài toán đạt được dấu bằng khi và chi khi a = b = c = 1. Ta sẽ sử dụng phương pháp làm trội làm giảm như sau:
Lời giải:
Áp dụng bất đẳng thức Cô si cho ba số a, b, c không âm có:
\(\frac{a}{{b + c}} + \frac{{b + c}}{4} + \frac{1}{{2a}} \ge 3\sqrt[3]{{\frac{a}{{b + c}}.\frac{{b + c}}{4}.\frac{1}{{2a}}}} = 3\sqrt[3]{{\frac{1}{8}}} = \frac{3}{2}\)
Tương tự ta có \(\frac{b}{{c + a}} + \frac{{c + a}}{4} + \frac{1}{{2b}} \ge \frac{3}{2}\) và \(\frac{c}{{a + b}} + \frac{{a + b}}{4} + \frac{1}{{2c}} \ge \frac{3}{2}\)
Cộng vế với vế ta có:
\(\frac{a}{{b + c}} + \frac{{b + c}}{4} + \frac{1}{{2a}} + \frac{b}{{c + a}} + \frac{{c + a}}{4} + \frac{1}{{2b}} + \frac{c}{{a + b}} + \frac{{a + b}}{4} + \frac{1}{{2c}} \ge 3.\frac{3}{2} = \frac{9}{2}\)
\(\Leftrightarrow \frac{a}{{b + c}} + \frac{b}{{c + a}} + \frac{c}{{a + b}} + \frac{{2\left( {a + b + c} \right)}}{4} + \frac{{ab + bc + ca}}{{2abc}} \ge \frac{9}{2}\)
\(\Leftrightarrow \frac{a}{{b + c}} + \frac{b}{{c + a}} + \frac{c}{{a + b}} + \frac{{a + b + c}}{2} + \frac{{a + b + c}}{2} \ge \frac{9}{2}\)
\(\Leftrightarrow \frac{a}{{b + c}} + \frac{b}{{c + a}} + \frac{c}{{a + b}} \ge \frac{9}{2} - 3 = \frac{3}{2}\)
Dấu “=” xảy ra khi và chỉ khi a = b = c = 1
III. Bài tập về bất đẳng thức Cô si
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức sau:
a, \(B = \frac{{\left( {x + 4} \right)\left( {x + 9} \right)}}{x}\)với x > 0
(gợi ý: biến đổi \(B = \frac{{\left( {x + 4} \right)\left( {x + 9} \right)}}{x} = \frac{{{x^2} + 13x + 36}}{x} = x + 13 + \frac{{36}}{x}\) rồi áp dụng bất đẳng thức Cô si)
b, \(C = \frac{{{{\left( {x + 10} \right)}^2}}}{x}\) với x > 0
c, \(D = \frac{x}{3} + \frac{3}{{x - 2}}\)với x > 2
(gợi ý: biến đổi rồi áp dụng bất đẳng thức Cô si)
Bài 2: Tìm giá trị nhỏ nhất của biểu thức \(P = x + \frac{1}{y} + \frac{4}{{x - y}}\) với x > y > 0
(gợi ý: biến đổi \(P = x - y + \frac{4}{{x - y}} + y + \frac{1}{y}\))
Bài 3: Với a, b, c là các số thực không âm, chứng minh:
\(\left( {a + b + c} \right)\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) \ge 9\)
(gợi ý áp dụng bất đẳng thức Cô si cho ba số a, b, c không âm)
Bài 4: Cho ba số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh rằng:
\(\frac{{b + c}}{a} + \frac{{c + a}}{b} + \frac{{a + b}}{c} \ge 6\)
(gợi ý sử dụng phương pháp làm trội)
Tham khảo thêm
Đề luyện thi vào lớp 10 môn tiếng Anh năm 2022 số 20
Cách tính delta và delta phẩy phương trình bậc 2
Sử dụng sơ đồ Hoocne (Horner) để chia đa thức
Đề ôn thi vào lớp 10 môn tiếng Anh năm 2022 số 20
Ôn thi vào lớp 10 chuyên đề Ngữ âm Tiếng Anh
Đề ôn thi vào lớp 10 môn tiếng Anh Sở GD&ĐT Thành phố Hà Nội số 16
Tìm giá trị x nguyên để A nhận giá trị nguyên
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa dấu căn
Bất đẳng thức Bunhiacopxki
Đề thi vào lớp 10 môn tiếng Anh sở GD&ĐT Hà Nội số 16
Từ khóa » Các Bất đẳng Thức Cosi Lớp 9
-
Công Thức Bất đẳng Thức Côsi Lớp 9 Hay Nhất - TopLoigiai
-
Bất đẳng Thức Cosi Lớp 9 - Tổng Hợp 50 Bài Toán Mẫu Mực
-
Bất đẳng Thức Cosi Lớp 9
-
Bài Tập Về Bất đẳng Thức Cô Si Lớp 9 - Abcdonline
-
Bất đẳng Thức Cauchy ( Cô Si )
-
Toán 9, Bất đẳng Thức Cosi, Bất đẳng Thức Cauchy(phần 1)
-
Toán 9 Chuyên đề Bất đẳng Thức Cosi
-
Bài Tập Về Bất đẳng Thức Côsi Lớp 9
-
Chuyên đề Bất đẳng Thức Cosi Lớp 9 - 123doc
-
Cách Sử Dụng Bất đẳng Thức Cosi Qua Các Bài Tập Có Lời Giải
-
Bất đẳng Thức Côsi Lớp 9 Lý Thuyết
-
[Top Bình Chọn] - Bất đẳng Thức Côsi Lớp 9 - Trần Gia Hưng
-
Top 9 Bất đẳng Thức Cosi Học ở Lớp Mấy 2022
-
Toán NC Lớp 9 Bài 9: Chứng Minh Bất đẳng Thức Chứa Căn - YouTube