Bouveault–Blanc Reduction - Wikipedia

Type of chemical reaction
Bouveault-Blanc reduction
Named after Louis Bouveault Gustave Louis Blanc
Reaction type Organic redox reaction
Identifiers
Organic Chemistry Portal bouveault-blanc-reduction
RSC ontology ID RXNO:0000119

The Bouveault–Blanc reduction is a chemical reaction in which an ester is reduced to primary alcohols using absolute ethanol and sodium metal.[1] It was first reported by Louis Bouveault and Gustave Louis Blanc in 1903.[2][3][4] Bouveault and Blanc demonstrated the reduction of ethyl oleate and n-butyl oleate to oleyl alcohol.[5] Modified versions of which were subsequently refined and published in Organic Syntheses.[6][7][8]

The Bouveault-Blanc reduction

This reaction is used commercially although for laboratory scale reactions it was made obsolete by the introduction of lithium aluminium hydride.[1]

Reaction mechanism

[edit]

Sodium metal is a one-electron reducing agent. Four equivalents of sodium are required to fully reduce each ester, although two more equivalents are typically consumed in deprotonating the product alcohols to alkoxides. Ethanol serves as a proton source.[1] The reaction produces sodium alkoxides, according to the following stoichiometry:

RCOOR'   +   6 Na   +   4 CH3CH2OH   →   RCH2ONa   +   R'ONa   +   4 CH3CH2ONa

In practice, considerable sodium is consumed by the formation of hydrogen.[citation needed] For this reason, an excess of sodium is often required. Because the hydrolysis of sodium is rapid, not to mention dangerous, the Bouveault–Blanc reaction requires anhydrous ethanol and can give low yields with insufficiently dry ethanol.[9][8] The mechanism of the reaction follows:[1]

The mechanism of the Bouveault-Blanc reduction

Consistent with this mechanism, sodium-ethanol mixtures will also reduce ketones to alcohols.[10]

This approach to reducing esters was widely used prior to the availability of hydride reducing agents such as lithium aluminium hydride and related reagents. It requires vigorous reaction conditions and has a significant risk of fires, explaining its relative unpopularity. One modification involves encapsulating the alkali metal into a silica gel, which has a safety and yield profile similar to that of hydride reagents.[11] Another modification uses a sodium dispersion.[12][13]

See also

[edit]
  • Acyloin condensation – The reductive coupling of esters, using sodium, to yield an α-hydroxyketone
  • Akabori amino-acid reaction – The reduction of amino acid esters, by sodium, to yield aldehydes
  • Birch reduction – For the reduction of alkenes using sodium
  • Bouveault aldehyde synthesis – Another organometallic reaction by Bouveault where a Grignard reagent is converted to an aldehyde

References

[edit]
  1. ^ a b c d Wang, Zerong, ed. (2009). "109. Bouveault–Blanc Reduction". Comprehensive Organic Name Reactions and Reagents. pp. 493–496. doi:10.1002/9780470638859.conrr109. ISBN 978-0-471-70450-8.
  2. ^ Bouveault, L.; Blanc, G. (1903). "Préparation des alcools primaires au moyen des acides correspondants" [Preparation of primary alcohols by means of the corresponding acids]. Compt. Rend. (in French). 136: 1676–1678.
  3. ^ Bouveault, L.; Blanc, G. (1903). "Préparation des alcools primaires au moyen des acides correspondants" [Preparation of primary alcohols by means of the corresponding acids]. Compt. Rend. (in French). 137: 60–62.
  4. ^ Bouveault, L.; Blanc, G. (1904). "Transformation des acides monobasiques saturés dans les alcools primaires correspondants" [Transforming saturated monobasic acids into the corresponding primary alcohols]. Bull. Soc. Chim. Fr. (in French). 31: 666–672.
  5. ^ Bouveault, L.; Blanc, G. (1904). "Hydrogénation des éthers des acides possédant en outre les fonctions éther-oxyde ou acétal" [Hydrogenation of the ether of the acids furthermore possessing the ether-oxide or acetal functions]. Bull. Soc. Chim. Fr. (in French). 31 (3): 1210–1213.
  6. ^ Reid, E. E.; Cockerille, F. O.; Meyer, J. D.; Cox, W. M.; Ruhoff, J. R. (1935). "Oleyl Alcohol". Organic Syntheses. 15: 51. doi:10.15227/orgsyn.015.0051.
  7. ^ Adkins, Homer; Gillespie, R. H. (1949). "Oleyl alcohol". Organic Syntheses. 29: 80. doi:10.15227/orgsyn.029.0080.
  8. ^ a b Ford, S. G.; Marvel, C. S. (1930). "Lauryl Alcohol". Organic Syntheses. 10: 62. doi:10.15227/orgsyn.010.0062.
  9. ^ R. H. Manske (1934). "Decamethylene Glycol". Organic Syntheses. 14: 20. doi:10.15227/orgsyn.014.0020.
  10. ^ Whitmore, Frank C.; Otterbacher, T. (1930). "2-Heptanol". Organic Syntheses. 10: 60. doi:10.15227/orgsyn.010.0060.
  11. ^ Bodnar, Brian S.; Vogt, Paul F. (2009). "An Improved Bouveault-Blanc Ester Reduction with Stabilized Alkali Metals". J. Org. Chem. 74 (6): 2598–2600. doi:10.1021/jo802778z. PMID 19219971.
  12. ^ An, Jie; Work, D. Neil; Kenyon, Craig; Procter, David J. (2014). "Evaluating a Sodium Dispersion Reagent for the Bouveault–Blanc Reduction of Esters". J. Org. Chem. 79 (14): 6743–6747. doi:10.1021/jo501093g. PMID 24941291.
  13. ^ Han, Minhui; Ma, Xiaodong; Yao, Shangchu; Ding, Yuxuan; Yan, Zihan; Adijiang, Adila; Wu, Yufei; Li, Hengzhao; Zhang, Yuntong; Lei, Peng; Ling, Yun; An, Jie (2017). "Development of a Modified Bouveault–Blanc Reduction for the Selective Synthesis of α,α-Dideuterio Alcohols". J. Org. Chem. 82 (2): 1285–1290. doi:10.1021/acs.joc.6b02950. PMID 28029787.
[edit]
  • Animation of the Bouveault–Blanc reduction
  • v
  • t
  • e
Topics in organic reactions
  • Addition reaction
  • Elimination reaction
  • Polymerization
  • Reagents
  • Rearrangement reaction
  • Redox reaction
  • Regioselectivity
  • Stereoselectivity
  • Stereospecificity
  • Substitution reaction
  • A value
  • Alpha effect
  • Annulene
  • Anomeric effect
  • Antiaromaticity
  • Aromatic ring current
  • Aromaticity
  • Baird's rule
  • Baker–Nathan effect
  • Baldwin's rules
  • Bema Hapothle
  • Beta-silicon effect
  • Bicycloaromaticity
  • Bredt's rule
  • Bürgi–Dunitz angle
  • Catalytic resonance theory
  • Charge remote fragmentation
  • Charge-transfer complex
  • Clar's rule
  • Conformational isomerism
  • Conjugated system
  • Conrotatory and disrotatory
  • Curtin–Hammett principle
  • Dynamic binding (chemistry)
  • Edwards equation
  • Effective molarity
  • Electromeric effect
  • Electron-rich
  • Electron-withdrawing group
  • Electronic effect
  • Electrophile
  • Evelyn effect
  • Flippin–Lodge angle
  • Free-energy relationship
  • Grunwald–Winstein equation
  • Hammett acidity function
  • Hammett equation
  • George S. Hammond
  • Hammond's postulate
  • Homoaromaticity
  • Hückel's rule
  • Hyperconjugation
  • Inductive effect
  • Kinetic isotope effect
  • LFER solvent coefficients (data page)
  • Marcus theory
  • Markovnikov's rule
  • Möbius aromaticity
  • Möbius–Hückel concept
  • More O'Ferrall–Jencks plot
  • Negative hyperconjugation
  • Neighbouring group participation
  • 2-Norbornyl cation
  • Nucleophile
  • Kennedy J. P. Orton
  • Passive binding
  • Phosphaethynolate
  • Polar effect
  • Polyfluorene
  • Ring strain
  • Σ-aromaticity
  • Spherical aromaticity
  • Spiroaromaticity
  • Steric effects
  • Superaromaticity
  • Swain–Lupton equation
  • Taft equation
  • Thorpe–Ingold effect
  • Vinylogy
  • Walsh diagram
  • Woodward–Hoffmann rules
  • Woodward's rules
  • Y-aromaticity
  • Yukawa–Tsuno equation
  • Zaitsev's rule
  • Σ-bishomoaromaticity
List of organic reactions
Carbon-carbon bond forming reactions
  • Acetoacetic ester synthesis
  • Acyloin condensation
  • Aldol condensation
  • Aldol reaction
  • Alkane metathesis
  • Alkyne metathesis
  • Alkyne trimerisation
  • Alkynylation
  • Allan–Robinson reaction
  • Arndt–Eistert reaction
  • Auwers synthesis
  • Aza-Baylis–Hillman reaction
  • Barbier reaction
  • Barton–Kellogg reaction
  • Baylis–Hillman reaction
  • Benary reaction
  • Bergman cyclization
  • Biginelli reaction
  • Bingel reaction
  • Blaise ketone synthesis
  • Blaise reaction
  • Blanc chloromethylation
  • Bodroux–Chichibabin aldehyde synthesis
  • Bouveault aldehyde synthesis
  • Bucherer–Bergs reaction
  • Buchner ring expansion
  • Cadiot–Chodkiewicz coupling
  • Carbonyl allylation
  • Carbonyl olefin metathesis
  • Castro–Stephens coupling
  • Chan rearrangement
  • Chan–Lam coupling
  • Claisen condensation
  • Claisen rearrangement
  • Claisen-Schmidt condensation
  • Combes quinoline synthesis
  • Corey–Fuchs reaction
  • Corey–House synthesis
  • Coupling reaction
  • Cross-coupling reaction
  • Cross dehydrogenative coupling
  • Cross-coupling partner
  • Dakin–West reaction
  • Darzens reaction
  • Diels–Alder reaction
  • Doebner reaction
  • Wulff–Dötz reaction
  • Ene reaction
  • Enyne metathesis
  • Ethenolysis
  • Favorskii reaction
  • Ferrier carbocyclization
  • Friedel–Crafts reaction
  • Fujimoto–Belleau reaction
  • Fujiwara–Moritani reaction
  • Fukuyama coupling
  • Gabriel–Colman rearrangement
  • Gattermann reaction
  • Glaser coupling
  • Grignard reaction
  • Grignard reagent
  • Hammick reaction
  • Heck reaction
  • Henry reaction
  • Heterogeneous metal catalyzed cross-coupling
  • High dilution principle
  • Hiyama coupling
  • Homologation reaction
  • Horner–Wadsworth–Emmons reaction
  • Hydrocyanation
  • Hydrovinylation
  • Hydroxymethylation
  • Ivanov reaction
  • Johnson–Corey–Chaykovsky reaction
  • Julia olefination
  • Julia–Kocienski olefination
  • Kauffmann olefination
  • Knoevenagel condensation
  • Knorr pyrrole synthesis
  • Kolbe–Schmitt reaction
  • Kowalski ester homologation
  • Kulinkovich reaction
  • Kumada coupling
  • Liebeskind–Srogl coupling
  • Malonic ester synthesis
  • Mannich reaction
  • McMurry reaction
  • Meerwein arylation
  • Methylenation
  • Michael reaction
  • Minisci reaction
  • Mizoroki-Heck vs. Reductive Heck
  • Nef isocyanide reaction
  • Nef synthesis
  • Negishi coupling
  • Nierenstein reaction
  • Nitro-Mannich reaction
  • Nozaki–Hiyama–Kishi reaction
  • Olefin conversion technology
  • Olefin metathesis
  • Palladium–NHC complex
  • Passerini reaction
  • Peterson olefination
  • Pfitzinger reaction
  • Piancatelli rearrangement
  • Pinacol coupling reaction
  • Prins reaction
  • Quelet reaction
  • Ramberg–Bäcklund reaction
  • Rauhut–Currier reaction
  • Reformatsky reaction
  • Reimer–Tiemann reaction
  • Rieche formylation
  • Ring-closing metathesis
  • Robinson annulation
  • Sakurai reaction
  • Seyferth–Gilbert homologation
  • Shapiro reaction
  • Sonogashira coupling
  • Stetter reaction
  • Stille reaction
  • Stollé synthesis
  • Stork enamine alkylation
  • Suzuki reaction
  • Takai olefination
  • Thermal rearrangement of aromatic hydrocarbons
  • Thorpe reaction
  • Ugi reaction
  • Ullmann reaction
  • Wagner-Jauregg reaction
  • Weinreb ketone synthesis
  • Wittig reaction
  • Wurtz reaction
  • Wurtz–Fittig reaction
  • Zincke–Suhl reaction
Homologation reactions
  • Arndt–Eistert reaction
  • Hooker reaction
  • Kiliani–Fischer synthesis
  • Kowalski ester homologation
  • Methoxymethylenetriphenylphosphorane
  • Seyferth–Gilbert homologation
  • Wittig reaction
Olefination reactions
  • Bamford–Stevens reaction
  • Barton–Kellogg reaction
  • Boord olefin synthesis
  • Chugaev elimination
  • Cope reaction
  • Corey–Winter olefin synthesis
  • Dehydrohalogenation
  • Elimination reaction
  • Grieco elimination
  • Hofmann elimination
  • Horner–Wadsworth–Emmons reaction
  • Hydrazone iodination
  • Julia olefination
  • Julia–Kocienski olefination
  • Kauffmann olefination
  • McMurry reaction
  • Peterson olefination
  • Ramberg–Bäcklund reaction
  • Shapiro reaction
  • Takai olefination
  • Wittig reaction
Carbon-heteroatom bond forming reactions
  • Azo coupling
  • Bartoli indole synthesis
  • Boudouard reaction
  • Cadogan–Sundberg indole synthesis
  • Diazonium compound
  • Esterification
  • Grignard reagent
  • Haloform reaction
  • Hegedus indole synthesis
  • Hurd–Mori 1,2,3-thiadiazole synthesis
  • Kharasch–Sosnovsky reaction
  • Knorr pyrrole synthesis
  • Leimgruber–Batcho indole synthesis
  • Mukaiyama hydration
  • Nenitzescu indole synthesis
  • Oxymercuration reaction
  • Reed reaction
  • Schotten–Baumann reaction
  • Ullmann condensation
  • Williamson ether synthesis
  • Yamaguchi esterification
Degradation reactions
  • Barbier–Wieland degradation
  • Bergmann degradation
  • Edman degradation
  • Emde degradation
  • Gallagher–Hollander degradation
  • Hofmann rearrangement
  • Hooker reaction
  • Isosaccharinic acid
  • Marker degradation
  • Ruff degradation
  • Strecker degradation
  • Von Braun amide degradation
  • Weerman degradation
  • Wohl degradation
Organic redox reactions
  • Acyloin condensation
  • Adkins–Peterson reaction
  • Akabori amino-acid reaction
  • Alcohol oxidation
  • Algar–Flynn–Oyamada reaction
  • Amide reduction
  • Andrussow process
  • Angeli–Rimini reaction
  • Aromatization
  • Autoxidation
  • Baeyer–Villiger oxidation
  • Barton–McCombie deoxygenation
  • Bechamp reduction
  • Benkeser reaction
  • Bergmann degradation
  • Birch reduction
  • Bohn–Schmidt reaction
  • Bosch reaction
  • Bouveault–Blanc reduction
  • Boyland–Sims oxidation
  • Cannizzaro reaction
  • Carbonyl reduction
  • Clemmensen reduction
  • Collins oxidation
  • Corey–Itsuno reduction
  • Corey–Kim oxidation
  • Corey–Winter olefin synthesis
  • Criegee oxidation
  • Dakin oxidation
  • Davis oxidation
  • Deoxygenation
  • Dess–Martin oxidation
  • DNA oxidation
  • Elbs persulfate oxidation
  • Emde degradation
  • Eschweiler–Clarke reaction
  • Étard reaction
  • Fischer–Tropsch process
  • Fleming–Tamao oxidation
  • Fukuyama reduction
  • Ganem oxidation
  • Glycol cleavage
  • Griesbaum coozonolysis
  • Grundmann aldehyde synthesis
  • Haloform reaction
  • Hydrogenation
  • Hydrogenolysis
  • Hydroxylation
  • Jones oxidation
  • Kiliani–Fischer synthesis
  • Kolbe electrolysis
  • Kornblum oxidation
  • Kornblum–DeLaMare rearrangement
  • Leuckart reaction
  • Ley oxidation
  • Lindgren oxidation
  • Lipid peroxidation
  • Lombardo methylenation
  • Luche reduction
  • Markó–Lam deoxygenation
  • McFadyen–Stevens reaction
  • Meerwein–Ponndorf–Verley reduction
  • Methionine sulfoxide
  • Miyaura borylation
  • Mozingo reduction
  • Noyori asymmetric hydrogenation
  • Omega oxidation
  • Oppenauer oxidation
  • Oxygen rebound mechanism
  • Ozonolysis
  • Parikh–Doering oxidation
  • Pinnick oxidation
  • Prévost reaction
  • Reduction of nitro compounds
  • Reductive amination
  • Riley oxidation
  • Rosenmund reduction
  • Rubottom oxidation
  • Sabatier reaction
  • Sarett oxidation
  • Selenoxide elimination
  • Shapiro reaction
  • Sharpless asymmetric dihydroxylation
  • Epoxidation of allylic alcohols
  • Sharpless epoxidation
  • Sharpless oxyamination
  • Stahl oxidation
  • Staudinger reaction
  • Stephen aldehyde synthesis
  • Swern oxidation
  • Transfer hydrogenation
  • Wacker process
  • Wharton reaction
  • Whiting reaction
  • Wohl–Aue reaction
  • Wolff–Kishner reduction
  • Wolffenstein–Böters reaction
  • Zinin reaction
Rearrangement reactions
  • 1,2-rearrangement
  • 1,2-Wittig rearrangement
  • 2,3-sigmatropic rearrangement
  • 2,3-Wittig rearrangement
  • Achmatowicz reaction
  • Alkyne zipper reaction
  • Allen–Millar–Trippett rearrangement
  • Allylic rearrangement
  • Alpha-ketol rearrangement
  • Amadori rearrangement
  • Arndt–Eistert reaction
  • Aza-Cope rearrangement
  • Baker–Venkataraman rearrangement
  • Bamberger rearrangement
  • Banert cascade
  • Beckmann rearrangement
  • Benzilic acid rearrangement
  • Bergman cyclization
  • Bergmann degradation
  • Boekelheide reaction
  • Brook rearrangement
  • Buchner ring expansion
  • Carroll rearrangement
  • Chan rearrangement
  • Claisen rearrangement
  • Cope rearrangement
  • Corey–Fuchs reaction
  • Cornforth rearrangement
  • Criegee rearrangement
  • Curtius rearrangement
  • Demjanov rearrangement
  • Di-π-methane rearrangement
  • Dimroth rearrangement
  • Divinylcyclopropane-cycloheptadiene rearrangement
  • Dowd–Beckwith ring-expansion reaction
  • Electrocyclic reaction
  • Ene reaction
  • Enyne metathesis
  • Favorskii reaction
  • Favorskii rearrangement
  • Ferrier carbocyclization
  • Ferrier rearrangement
  • Fischer–Hepp rearrangement
  • Fries rearrangement
  • Fritsch–Buttenberg–Wiechell rearrangement
  • Gabriel–Colman rearrangement
  • Group transfer reaction
  • Halogen dance rearrangement
  • Hayashi rearrangement
  • Hofmann rearrangement
  • Hofmann–Martius rearrangement
  • Ireland–Claisen rearrangement
  • Jacobsen rearrangement
  • Kornblum–DeLaMare rearrangement
  • Kowalski ester homologation
  • Lobry de Bruyn–Van Ekenstein transformation
  • Lossen rearrangement
  • McFadyen–Stevens reaction
  • McLafferty rearrangement
  • Meyer–Schuster rearrangement
  • Mislow–Evans rearrangement
  • Mumm rearrangement
  • Myers allene synthesis
  • Nazarov cyclization reaction
  • Neber rearrangement
  • Newman–Kwart rearrangement
  • Overman rearrangement
  • Oxy-Cope rearrangement
  • Pericyclic reaction
  • Piancatelli rearrangement
  • Pinacol rearrangement
  • Pummerer rearrangement
  • Ramberg–Bäcklund reaction
  • Ring expansion and contraction
  • Ring-closing metathesis
  • Rupe reaction
  • Schmidt reaction
  • Semipinacol rearrangement
  • Seyferth–Gilbert homologation
  • Sigmatropic reaction
  • Skattebøl rearrangement
  • Smiles rearrangement
  • Sommelet–Hauser rearrangement
  • Stevens rearrangement
  • Stieglitz rearrangement
  • Thermal rearrangement of aromatic hydrocarbons
  • Tiffeneau–Demjanov rearrangement
  • Vinylcyclopropane rearrangement
  • Wagner–Meerwein rearrangement
  • Wallach rearrangement
  • Weerman degradation
  • Westphalen–Lettré rearrangement
  • Willgerodt rearrangement
  • Wolff rearrangement
Ring forming reactions
  • 1,3-Dipolar cycloaddition
  • Annulation
  • Azide-alkyne Huisgen cycloaddition
  • Baeyer–Emmerling indole synthesis
  • Bartoli indole synthesis
  • Bergman cyclization
  • Biginelli reaction
  • Bischler–Möhlau indole synthesis
  • Bischler–Napieralski reaction
  • Blum–Ittah aziridine synthesis
  • Bobbitt reaction
  • Bohlmann–Rahtz pyridine synthesis
  • Borsche–Drechsel cyclization
  • Bucherer carbazole synthesis
  • Bucherer–Bergs reaction
  • Cadogan–Sundberg indole synthesis
  • Camps quinoline synthesis
  • Chichibabin pyridine synthesis
  • Cook–Heilbron thiazole synthesis
  • Cycloaddition
  • Darzens reaction
  • Davis–Beirut reaction
  • De Kimpe aziridine synthesis
  • Debus–Radziszewski imidazole synthesis
  • Dieckmann condensation
  • Diels–Alder reaction
  • Feist–Benary synthesis
  • Ferrario–Ackermann reaction
  • Fiesselmann thiophene synthesis
  • Fischer indole synthesis
  • Fischer oxazole synthesis
  • Friedländer synthesis
  • Gewald reaction
  • Graham reaction
  • Hantzsch pyridine synthesis
  • Hegedus indole synthesis
  • Hemetsberger indole synthesis
  • Hofmann–Löffler reaction
  • Hurd–Mori 1,2,3-thiadiazole synthesis
  • Iodolactonization
  • Isay reaction
  • Jacobsen epoxidation
  • Johnson–Corey–Chaykovsky reaction
  • Knorr pyrrole synthesis
  • Knorr quinoline synthesis
  • Kröhnke pyridine synthesis
  • Kulinkovich reaction
  • Larock indole synthesis
  • Madelung synthesis
  • Nazarov cyclization reaction
  • Nenitzescu indole synthesis
  • Niementowski quinazoline synthesis
  • Niementowski quinoline synthesis
  • Paal–Knorr synthesis
  • Paternò–Büchi reaction
  • Pechmann condensation
  • Petrenko-Kritschenko piperidone synthesis
  • Pictet–Spengler reaction
  • Pomeranz–Fritsch reaction
  • Prilezhaev reaction
  • Pschorr cyclization
  • Reissert indole synthesis
  • Ring-closing metathesis
  • Robinson annulation
  • Sharpless epoxidation
  • Simmons–Smith reaction
  • Skraup reaction
  • Urech hydantoin synthesis
  • Van Leusen reaction
  • Wenker synthesis
Cycloaddition
  • 1,3-Dipolar cycloaddition
  • 4+4 Photocycloaddition
  • (4+3) cycloaddition
  • 6+4 Cycloaddition
  • Alkyne trimerisation
  • Aza-Diels–Alder reaction
  • Azide-alkyne Huisgen cycloaddition
  • Bradsher cycloaddition
  • Cheletropic reaction
  • Conia-ene reaction
  • Cyclopropanation
  • Diazoalkane 1,3-dipolar cycloaddition
  • Diels–Alder reaction
  • Enone–alkene cycloadditions
  • Hexadehydro Diels–Alder reaction
  • Intramolecular Diels–Alder cycloaddition
  • Inverse electron-demand Diels–Alder reaction
  • Ketene cycloaddition
  • McCormack reaction
  • Metal-centered cycloaddition reactions
  • Nitrone-olefin (3+2) cycloaddition
  • Oxo-Diels–Alder reaction
  • Ozonolysis
  • Pauson–Khand reaction
  • Povarov reaction
  • Prato reaction
  • Retro-Diels–Alder reaction
  • Staudinger synthesis
  • Trimethylenemethane cycloaddition
  • Vinylcyclopropane (5+2) cycloaddition
  • Wagner-Jauregg reaction
Heterocycle forming reactions
  • Algar–Flynn–Oyamada reaction
  • Allan–Robinson reaction
  • Auwers synthesis
  • Bamberger triazine synthesis
  • Banert cascade
  • Barton–Zard reaction
  • Bernthsen acridine synthesis
  • Bischler–Napieralski reaction
  • Bobbitt reaction
  • Boger pyridine synthesis
  • Borsche–Drechsel cyclization
  • Bucherer carbazole synthesis
  • Bucherer–Bergs reaction
  • Chichibabin pyridine synthesis
  • Cook–Heilbron thiazole synthesis
  • Diazoalkane 1,3-dipolar cycloaddition
  • Einhorn–Brunner reaction
  • Erlenmeyer–Plöchl azlactone and amino-acid synthesis
  • Feist–Benary synthesis
  • Fischer oxazole synthesis
  • Gabriel–Colman rearrangement
  • Gewald reaction
  • Hantzsch ester
  • Hantzsch pyridine synthesis
  • Herz reaction
  • Knorr pyrrole synthesis
  • Kröhnke pyridine synthesis
  • Lectka enantioselective beta-lactam synthesis
  • Lehmstedt–Tanasescu reaction
  • Niementowski quinazoline synthesis
  • Nitrone-olefin (3+2) cycloaddition
  • Paal–Knorr synthesis
  • Pellizzari reaction
  • Pictet–Spengler reaction
  • Pomeranz–Fritsch reaction
  • Prilezhaev reaction
  • Robinson–Gabriel synthesis
  • Stollé synthesis
  • Urech hydantoin synthesis
  • Wenker synthesis
  • Wohl–Aue reaction

Từ khóa » Ch3cooc2h5 + Na