Build From Source On Windows - Install - TensorFlow
Có thể bạn quan tâm
Build a TensorFlow pip package from the source and install it on Windows.
Note: We already provide well-tested, pre-built TensorFlow packages for Windows systems.Setup for Windows
Install the following build tools to configure your Windows development environment.
Install Python and the TensorFlow package dependencies
Install a Python 3.9+ 64-bit release for Windows. Select pip as an optional feature and add it to your %PATH% environmental variable.
Install the TensorFlow pip package dependencies:
pip3 install -U pip pip3 install -U six numpy wheel packaging pip3 install -U keras_preprocessing --no-depsThe dependencies are listed in the setup.py file under REQUIRED_PACKAGES.
Install Bazel
Install Bazel, the build tool used to compile TensorFlow. For Bazel version, see the tested build configurations for Windows. Configure Bazel to build C++.
Add the location of the Bazel executable to your %PATH% environment variable.
Install MSYS2
Install MSYS2 for the bin tools needed to build TensorFlow. If MSYS2 is installed to C:\msys64, add C:\msys64\usr\bin to your %PATH% environment variable. Then, using cmd.exe, run:
pacman -Syu (requires a console restart) pacman -S git patch unzip pacman -S git patch unzip rsync Note: Clang will be the preferred compiler to build TensorFlow CPU wheels on the Windows Platform starting with TF 2.16.1 The currently supported version is LLVM/clang 17.0.6.Note: To build with Clang on Windows, it is required to install both LLVM and Visual C++ Build tools as although Windows uses clang-cl.exe as the compiler, Visual C++ Build tools are needed to link to Visual C++ librariesInstall Visual C++ Build Tools 2022
Install the Visual C++ build tools 2022. This comes with Visual Studio Community 2022 but can be installed separately:
- Go to the Visual Studio downloads,
- Select Tools for Visual Studio or Other Tools, Framework and Redistributables,
- Download and install:
- Build Tools for Visual Studio 2022
- Microsoft Visual C++ Redistributables for Visual Studio 2022
Install LLVM
- Go to the LLVM downloads,
- Download and install Windows-compatible LLVM in C:/Program Files/LLVM e.g., LLVM-17.0.6-win64.exe
Install GPU support (optional)
See the Windows GPU support guide to install the drivers and additional software required to run TensorFlow on a GPU.
Note: GPU support on native-Windows is only available for 2.10 or earlier versions, starting in TF 2.11, CUDA build is not supported for Windows. For using TensorFlow GPU on Windows, you will need to build/install TensorFlow in WSL2 or use tensorflow-cpu with TensorFlow-DirectML-PluginDownload the TensorFlow source code
Use Git to clone the TensorFlow repository (git is installed with MSYS2):
git clone https://github.com/tensorflow/tensorflow.git cd tensorflowThe repo defaults to the master development branch. You can also check out a release branch to build:
gitcheckoutbranch_name# r1.9, r1.10, etc. Key Point: If you're having build problems on the latest development branch, try a release branch that is known to work.Optional: Environmental Variable Set Up
Run the following commands before running the build command to avoid issues with package creation: (If the below commands were set up while installing the packages, please ignore them). Run set to check if all the paths were set correctly, run echo %Environmental Variable% e.g., echo %BAZEL_VC% to check the path set up for a specific Environmental Variable
Python path set up issue tensorflow:issue#59943,tensorflow:issue#9436,tensorflow:issue#60083
set PATH=path/to/python;%PATH% # [e.g. (C:/Python311)] set PATH=path/to/python/Scripts;%PATH% # [e.g. (C:/Python311/Scripts)] set PYTHON_BIN_PATH=path/to/python_virtualenv/Scripts/python.exe set PYTHON_LIB_PATH=path/to/python virtualenv/lib/site-packages set PYTHON_DIRECTORY=path/to/python_virtualenv/ScriptsBazel/MSVC/CLANG path set up issue tensorflow:issue#54578
set BAZEL_SH=C:/msys64/usr/bin/bash.exe set BAZEL_VS=C:/Program Files/Microsoft Visual Studio/2022/BuildTools set BAZEL_VC=C:/Program Files/Microsoft Visual Studio/2022/BuildTools/VC set Bazel_LLVM=C:/Program Files/LLVM (explicitly tell Bazel where LLVM is installed by BAZEL_LLVM, needed while using CLANG) set PATH=C:/Program Files/LLVM/bin;%PATH% (Optional, needed while using CLANG as Compiler)Optional: Configure the build
TensorFlow builds are configured by the .bazelrc file in the repository's root directory. The ./configure or ./configure.py scripts can be used to adjust common settings.
If you need to change the configuration, run the ./configure script from the repository's root directory.
python ./configure.pyThis script prompts you for the location of TensorFlow dependencies and asks for additional build configuration options (compiler flags, for example). The following shows a sample run of python ./configure.py (your session may differ):
View sample configuration session
python ./configure.py You have bazel 6.5.0 installed. Please specify the location of python. [Default is C:\Python311\python.exe]: Found possible Python library paths: C:\Python311\lib\site-packages Please input the desired Python library path to use. Default is [C:\Python311\lib\site-packages] Do you wish to build TensorFlow with ROCm support? [y/N]: No ROCm support will be enabled for TensorFlow. Warning: Cannot build with CUDA support on Windows. Starting in TF 2.11, CUDA build is not supported for Windows. To use TensorFlow GPU on Windows, you will need to build/install TensorFlow in WSL2. Do you want to use Clang to build TensorFlow? [Y/n]: Add "--config=win_clang" to compile TensorFlow with CLANG. Please specify the path to clang executable. [Default is C:\Program Files\LLVM\bin\clang.EXE]: You have Clang 17.0.6 installed. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is /arch:AVX]: Would you like to override eigen strong inline for some C++ compilation to reduce the compilation time? [Y/n]: Eigen strong inline overridden. Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=" to your build command. See .bazelrc for more details. --config=mkl # Build with MKL support. --config=mkl_aarch64 # Build with oneDNN and Compute Library for the Arm Architecture (ACL). --config=monolithic # Config for mostly static monolithic build. --config=numa # Build with NUMA support. --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects. --config=v1 # Build with TensorFlow 1 API instead of TF 2 API. Preconfigured Bazel build configs to DISABLE default on features: --config=nogcp # Disable GCP support. --config=nonccl # Disable NVIDIA NCCL support.Build and install the pip package
The pip package is built in two steps. A bazel build command creates a "package-builder" program. You then run the package-builder to create the package.
Build the package-builder
tensorflow:master repo has been updated to build 2.x by default. Install Bazel and use bazel build to create the TensorFlow package-builder.
bazel build //tensorflow/tools/pip_package:wheelCPU-only
Use bazel to make the TensorFlow package builder with CPU-only support:
Build with MSVC
bazel build --config=opt --repo_env=TF_PYTHON_VERSION=3.11 //tensorflow/tools/pip_package:wheel --repo_env=WHEEL_NAME=tensorflow_cpuBuild with CLANG
Use --config=win_clang to build TenorFlow with the CLANG Compiler:
bazel build --config=win_clang --repo_env=TF_PYTHON_VERSION=3.11 //tensorflow/tools/pip_package:wheel --repo_env=WHEEL_NAME=tensorflow_cpuGPU support
Note: GPU support on native-Windows is only available for 2.10 or earlier versions, starting in TF 2.11, CUDA build is not supported for Windows. For using TensorFlow GPU on Windows, you will need to build/install TensorFlow in WSL2 or use tensorflow-cpu with TensorFlow-DirectML-PluginTo make the TensorFlow package builder with GPU support:
bazel build --config=opt --config=cuda --define=no_tensorflow_py_deps=true //tensorflow/tools/pip_package:build_pip_packageCommands to clean the bazel cache to resolve errors due to invalid or outdated cached data, bazel clean with --expunge flag removes files permanently
bazel clean bazel clean --expungeBazel build options
Use this option when building to avoid issues with package creation: tensorflow:issue#22390
--define=no_tensorflow_py_deps=trueSee the Bazel command-line reference for build options.
Building TensorFlow from source can use a lot of RAM. If your system is memory-constrained, limit Bazel's RAM usage with: --local_ram_resources=2048.
If building with GPU support, add --copt=-nvcc_options=disable-warnings to suppress nvcc warning messages.
Build the package
To build a pip package, you need to specify the --repo_env=WHEEL_NAME flag. Depending on the provided name, the package will be created. For example:
To build tensorflow CPU package: bazel build //tensorflow/tools/pip_package:wheel --repo_env=WHEEL_NAME=tensorflow_cpu
To build nightly package, set tf_nightly instead of tensorflow, e.g. to build CPU nightly package: bazel build //tensorflow/tools/pip_package:wheel --repo_env=WHEEL_NAME=tf_nightly_cpu
As a result, generated wheel will be located in bazel-bin/tensorflow/tools/pip_package/wheel_house/
Install the package
The filename of the generated .whl file depends on the TensorFlow version and your platform. Use pip install to install the package, for example:
pipinstallbazel-bin/tensorflow/tools/pip_package/wheel_house/tensorflow-version-tags.whl Success: TensorFlow is now installed.Build using the MSYS shell
TensorFlow can also be built using the MSYS shell. Make the changes listed below, then follow the previous instructions for the Windows native command line (cmd.exe).
Disable MSYS path conversion
MSYS automatically converts arguments that look like Unix paths to Windows paths, and this doesn't work with bazel. (The label //path/to:bin is considered a Unix absolute path since it starts with a slash.)
exportMSYS_NO_PATHCONV=1 exportMSYS2_ARG_CONV_EXCL="*"Set your PATH
Add the Bazel and Python installation directories to your $PATH environmental variable. If Bazel is installed to C:\tools\bazel.exe, and Python to C:\Python\python.exe, set your PATH with:
# Use Unix-style with ':' as separator exportPATH="/c/tools:$PATH" exportPATH="/c/path/to/Python:$PATH"For GPU support, add the CUDA and cuDNN bin directories to your $PATH:
exportPATH="/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.0/bin:$PATH" exportPATH="/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.0/extras/CUPTI/libx64:$PATH" exportPATH="/c/tools/cuda/bin:$PATH" Note: Starting in TF 2.11, CUDA build is not supported for Windows. For using TensorFlow GPU on Windows, you will need to build/install TensorFlow in WSL2 or use tensorflow-cpu with TensorFlow-DirectML-PluginTested build configurations
CPU
| Version | Python version | Compiler | Build tools |
|---|---|---|---|
| tensorflow-2.20.0 | 3.9-3.13 | CLANG 18.1.4 | Bazel 7.4.1 |
| tensorflow-2.19.0 | 3.9-3.12 | CLANG 18.1.4 | Bazel 6.5.0 |
| tensorflow-2.18.0 | 3.9-3.12 | CLANG 17.0.6 | Bazel 6.5.0 |
| tensorflow-2.17.0 | 3.9-3.12 | CLANG 17.0.6 | Bazel 6.5.0 |
| tensorflow-2.16.1 | 3.9-3.12 | CLANG 17.0.6 | Bazel 6.5.0 |
| tensorflow-2.15.0 | 3.9-3.11 | MSVC 2019 | Bazel 6.1.0 |
| tensorflow-2.14.0 | 3.9-3.11 | MSVC 2019 | Bazel 6.1.0 |
| tensorflow-2.12.0 | 3.8-3.11 | MSVC 2019 | Bazel 5.3.0 |
| tensorflow-2.11.0 | 3.7-3.10 | MSVC 2019 | Bazel 5.3.0 |
| tensorflow-2.10.0 | 3.7-3.10 | MSVC 2019 | Bazel 5.1.1 |
| tensorflow-2.9.0 | 3.7-3.10 | MSVC 2019 | Bazel 5.0.0 |
| tensorflow-2.8.0 | 3.7-3.10 | MSVC 2019 | Bazel 4.2.1 |
| tensorflow-2.7.0 | 3.7-3.9 | MSVC 2019 | Bazel 3.7.2 |
| tensorflow-2.6.0 | 3.6-3.9 | MSVC 2019 | Bazel 3.7.2 |
| tensorflow-2.5.0 | 3.6-3.9 | MSVC 2019 | Bazel 3.7.2 |
| tensorflow-2.4.0 | 3.6-3.8 | MSVC 2019 | Bazel 3.1.0 |
| tensorflow-2.3.0 | 3.5-3.8 | MSVC 2019 | Bazel 3.1.0 |
| tensorflow-2.2.0 | 3.5-3.8 | MSVC 2019 | Bazel 2.0.0 |
| tensorflow-2.1.0 | 3.5-3.7 | MSVC 2019 | Bazel 0.27.1-0.29.1 |
| tensorflow-2.0.0 | 3.5-3.7 | MSVC 2017 | Bazel 0.26.1 |
| tensorflow-1.15.0 | 3.5-3.7 | MSVC 2017 | Bazel 0.26.1 |
| tensorflow-1.14.0 | 3.5-3.7 | MSVC 2017 | Bazel 0.24.1-0.25.2 |
| tensorflow-1.13.0 | 3.5-3.7 | MSVC 2015 update 3 | Bazel 0.19.0-0.21.0 |
| tensorflow-1.12.0 | 3.5-3.6 | MSVC 2015 update 3 | Bazel 0.15.0 |
| tensorflow-1.11.0 | 3.5-3.6 | MSVC 2015 update 3 | Bazel 0.15.0 |
| tensorflow-1.10.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 |
| tensorflow-1.9.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 |
| tensorflow-1.8.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 |
| tensorflow-1.7.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 |
| tensorflow-1.6.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 |
| tensorflow-1.5.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 |
| tensorflow-1.4.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 |
| tensorflow-1.3.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 |
| tensorflow-1.2.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 |
| tensorflow-1.1.0 | 3.5 | MSVC 2015 update 3 | Cmake v3.6.3 |
| tensorflow-1.0.0 | 3.5 | MSVC 2015 update 3 | Cmake v3.6.3 |
GPU
Note: GPU support on native-Windows is only available for 2.10 or earlier versions, starting in TF 2.11, CUDA build is not supported for Windows. For using TensorFlow GPU on Windows, you will need to build/install TensorFlow in WSL2 or use tensorflow-cpu with TensorFlow-DirectML-Plugin| Version | Python version | Compiler | Build tools | cuDNN | CUDA |
|---|---|---|---|---|---|
| tensorflow_gpu-2.10.0 | 3.7-3.10 | MSVC 2019 | Bazel 5.1.1 | 8.1 | 11.2 |
| tensorflow_gpu-2.9.0 | 3.7-3.10 | MSVC 2019 | Bazel 5.0.0 | 8.1 | 11.2 |
| tensorflow_gpu-2.8.0 | 3.7-3.10 | MSVC 2019 | Bazel 4.2.1 | 8.1 | 11.2 |
| tensorflow_gpu-2.7.0 | 3.7-3.9 | MSVC 2019 | Bazel 3.7.2 | 8.1 | 11.2 |
| tensorflow_gpu-2.6.0 | 3.6-3.9 | MSVC 2019 | Bazel 3.7.2 | 8.1 | 11.2 |
| tensorflow_gpu-2.5.0 | 3.6-3.9 | MSVC 2019 | Bazel 3.7.2 | 8.1 | 11.2 |
| tensorflow_gpu-2.4.0 | 3.6-3.8 | MSVC 2019 | Bazel 3.1.0 | 8.0 | 11.0 |
| tensorflow_gpu-2.3.0 | 3.5-3.8 | MSVC 2019 | Bazel 3.1.0 | 7.6 | 10.1 |
| tensorflow_gpu-2.2.0 | 3.5-3.8 | MSVC 2019 | Bazel 2.0.0 | 7.6 | 10.1 |
| tensorflow_gpu-2.1.0 | 3.5-3.7 | MSVC 2019 | Bazel 0.27.1-0.29.1 | 7.6 | 10.1 |
| tensorflow_gpu-2.0.0 | 3.5-3.7 | MSVC 2017 | Bazel 0.26.1 | 7.4 | 10 |
| tensorflow_gpu-1.15.0 | 3.5-3.7 | MSVC 2017 | Bazel 0.26.1 | 7.4 | 10 |
| tensorflow_gpu-1.14.0 | 3.5-3.7 | MSVC 2017 | Bazel 0.24.1-0.25.2 | 7.4 | 10 |
| tensorflow_gpu-1.13.0 | 3.5-3.7 | MSVC 2015 update 3 | Bazel 0.19.0-0.21.0 | 7.4 | 10 |
| tensorflow_gpu-1.12.0 | 3.5-3.6 | MSVC 2015 update 3 | Bazel 0.15.0 | 7.2 | 9.0 |
| tensorflow_gpu-1.11.0 | 3.5-3.6 | MSVC 2015 update 3 | Bazel 0.15.0 | 7 | 9 |
| tensorflow_gpu-1.10.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 | 7 | 9 |
| tensorflow_gpu-1.9.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 | 7 | 9 |
| tensorflow_gpu-1.8.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 | 7 | 9 |
| tensorflow_gpu-1.7.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 | 7 | 9 |
| tensorflow_gpu-1.6.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 | 7 | 9 |
| tensorflow_gpu-1.5.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 | 7 | 9 |
| tensorflow_gpu-1.4.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 | 6 | 8 |
| tensorflow_gpu-1.3.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 | 6 | 8 |
| tensorflow_gpu-1.2.0 | 3.5-3.6 | MSVC 2015 update 3 | Cmake v3.6.3 | 5.1 | 8 |
| tensorflow_gpu-1.1.0 | 3.5 | MSVC 2015 update 3 | Cmake v3.6.3 | 5.1 | 8 |
| tensorflow_gpu-1.0.0 | 3.5 | MSVC 2015 update 3 | Cmake v3.6.3 | 5.1 | 8 |
Từ khóa » Cài đặt Tensorflow Trên Pycharm
-
Hướng Dẫn Cài đặt TensorFlow Trên Windows
-
Sử Dụng Tensorflow Trên PyCharm - HelpEx
-
Cách Cài đặt Tensorflow Các Phiên Bản - YouTube
-
How To Use TensorFlow In PyCharm (TensorFlow Tip Of The Week)
-
Hướng Dẫn Cài đặt TensowFlow Trên Windows
-
Cách Khắc Phục Không Thể Tìm Thấy Phiên Bản đáp ứng Yêu Cầu Cho ...
-
Cách Cài Đặt TensorFlow – Keras Cơ Bản - TEK4
-
Sử Dụng Tensorflow Với Anaconda Và PyCharm Trên Windows
-
Cài đặt TensorFlow Với Pip Python Trên Windows
-
Hướng Dẫn Cài đặt Tensorflow GPU Với CUDA 11.2 Trên Windows 10
-
Cách Cài đặt Tensorflow Trên Mac Hướng Dẫn Từ Scratch
-
Install TensorFlow 2
-
Hướng Dẫn Cài đặt Tensorflow Với Python Trên Window OS
-
(PDF) CÀI TENSORFLOW KERAS | Thanh Nguyen