Các Dạng Bài Tập Hàm Số Lượng Giác, Phương Trình ...
Có thể bạn quan tâm
- Các dạng bài tập Toán 11
- Các dạng bài tập Toán 11
- Kết nối tri thức
- Giải sgk Toán 11 Kết nối tri thức
- Giải Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải SBT Toán 11 Kết nối tri thức
- Lý thuyết Toán 11 Kết nối tri thức
- Trắc nghiệm Toán 11 Kết nối tri thức
- Chân trời sáng tạo
- Giải sgk Toán 11 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải SBT Toán 11 Chân trời sáng tạo
- Lý thuyết Toán 11 Chân trời sáng tạo
- Trắc nghiệm Toán 11 Chân trời sáng tạo
- Cánh diều
- Giải sgk Toán 11 Cánh diều
- Giải Chuyên đề học tập Toán 11 Cánh diều
- Giải SBT Toán 11 Cánh diều
- Lý thuyết Toán 11 Cánh diều
- Trắc nghiệm Toán 11 Cánh diều
- Các dạng bài tập Toán 11
- (Chuyên đề) Các dạng bài tập Hàm số lượng giác, phương trình lượng giác
- (Chuyên đề) Các dạng bài tập Dãy số, Cấp số cộng và cấp số nhân
- (Chuyên đề) Các dạng bài tập Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm
- (Chuyên đề) Các dạng bài tập Quan hệ song song trong không gian
- (Chuyên đề) Các dạng bài tập Giới hạn. Hàm số liên tục
- (Chuyên đề) Các dạng bài tập Hàm số liên tục
- (Chuyên đề) Các dạng bài tập Vectơ trong không gian. Quan hệ vuông góc trong không gian
- (Chuyên đề) Các dạng bài tập Quan hệ vuông góc trong không gian
- (Chuyên đề) Các dạng bài tập Đạo hàm
- Các dạng bài tập Đạo hàm
- Giảm giá 50% sách VietJack đánh giá năng lực các trường trên Shopee Mall
Tổng hợp các dạng bài tập Hàm số lượng giác, Phương trình lượng giác lớp 11 sách mới Kết nối tri thức, Chân trời sáng tạo, Cánh diều với phương pháp giải chi tiết và bài tập đa dạng giúp học sinh ôn tập, biết cách làm bài tập Hàm số lượng giác, Phương trình lượng giác.
Các dạng bài tập Hàm số lượng giác, Phương trình lượng giác (chọn lọc, có lời giải)
Số đo của góc lượng giác và hệ thức Chasles
Đổi đơn vị giữa độ và radian
Xác định độ dài cung tròn
Biểu diễn góc lượng giác trên đường tròn lượng giác
Tính các giá trị lượng giác của một góc lượng giác
Tính giá trị biểu thức liên quan đến giá trị lượng giác
Rút gọn biểu thức và chứng minh đẳng thức lượng giác
Bài toán thực tế về giá trị lượng giác của góc lượng giác
Áp dụng công thức cộng, công thức nhân đôi
Áp dụng công thức biến đổi tích thành tổng
Áp dụng công thức biến đổi tổng thành tích
Áp dụng công thức lượng giác vào bài toán rút gọn, chứng minh đẳng thức lượng giác
Bài toán thực tế về công thức lượng giác
Tìm tập xác định của hàm số lượng giác
Xác định tính chẵn, lẻ; tính tuần hoàn, chu kì của hàm số
Tìm giá trị lớn nhất, nhỏ nhất của hàm số
Bài toán thực tế về hàm số lượng giác
Giải phương trình lượng giác bằng cách vận dụng phương trình lượng giác cơ bản
Giải phương trình lượng giác bằng cách đưa về phương trình lượng giác cơ bản
Bài toán thực tế về phương trình lượng giác
Xem thêm các dạng bài tập Toán 11 sách mới:
- (Chuyên đề) Các dạng bài tập Dãy số, Cấp số cộng và cấp số nhân
- (Chuyên đề) Các dạng bài tập Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm
- (Chuyên đề) Các dạng bài tập Quan hệ song song trong không gian
- (Chuyên đề) Các dạng bài tập Giới hạn. Hàm số liên tục
- (Chuyên đề) Các dạng bài tập Hàm số liên tục
- (Chuyên đề) Các dạng bài tập Vectơ trong không gian. Quan hệ vuông góc trong không gian
- (Chuyên đề) Các dạng bài tập Quan hệ vuông góc trong không gian
- (Chuyên đề) Các dạng bài tập Đạo hàm
- Các dạng bài tập Đạo hàm
- (Chuyên đề) Các dạng bài tập Hàm số mũ & Hàm số lôgarit
- Chuyên đề Các quy tắc tính xác suất
- Các dạng bài tập Xác suất
Lưu trữ: Các dạng bài tập Hàm số lượng giác, Phương trình lượng giác (sách cũ)
Tổng hợp lý thuyết chương Hàm số lượng giác - phương trình lượng giác
- Lý thuyết Hàm số lượng giác Xem chi tiết
- Lý thuyết Phương trình lượng giác cơ bản Xem chi tiết
- Lý thuyết Một số phương trình lượng giác thường gặp Xem chi tiết
- Lý thuyết Tổng hợp chương Hàm số lượng giác - phương trình lượng giác Xem chi tiết
Các dạng bài tập
- Phương pháp Tìm tập xác định, tập giá trị của hàm số lượng giác
- Phương pháp Xét tính chẵn, lẻ, chu kì tuần hoàn của hàm số lượng giác
- Phương pháp tính giá trị lớn nhất – giá trị nhỏ nhất của hàm số lượng giác
- Phương pháp giải phương trình lượng giác cơ bản
- Tất tần tật về phương trình bậc nhất đối với hàm số lượng giác
- Các bài toán về phương trình bậc hai của hàm số lượng giác và cách giải
- Các bài toán về phương trình bậc nhất đối với sin và cos và cách giải
Chuyên đề: Hàm số lượng giác
- Dạng 1: Tập xác định, tập giá trị của hàm số lượng giác Xem chi tiết
- Trắc nghiệm tập xác định, tập giá trị của hàm số lượng giác Xem chi tiết
- Dạng 2: Tính chẵn, lẻ và chu kì của hàm số lượng giác Xem chi tiết
- Trắc nghiệm tính chẵn, lẻ và chu kì của hàm số lượng giác Xem chi tiết
- Tìm tập xác định của hàm số lượng giác Xem chi tiết
- Tính đơn điệu của hàm số lượng giác Xem chi tiết
- Xác định tính chẵn, lẻ của hàm số lượng giác Xem chi tiết
- Tính chu kì tuần hoàn của hàm số lượng giác Xem chi tiết
- Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác Xem chi tiết
- 60 bài tập trắc nghiệm hàm số lượng giác có đáp án (phần 1) Xem chi tiết
- 60 bài tập trắc nghiệm hàm số lượng giác có đáp án (phần 2) Xem chi tiết
Chuyên đề: Phương trình lượng giác
- Dạng 1: Cách giải phương trình lượng giác cơ bản Xem chi tiết
- Trắc nghiệm giải phương trình lượng giác cơ bản Xem chi tiết
- Dạng 2: Phương trình bậc hai với một hàm số lượng giác Xem chi tiết
- Trắc nghiệm phương trình bậc hai với một hàm số lượng giác Xem chi tiết
- Dạng 3: Phương trình bậc nhất theo sinx và cosx Xem chi tiết
- Trắc nghiệm phương trình bậc nhất theo sinx và cosx Xem chi tiết
- Dạng 4: Phương trình đẳng cấp bậc 2, bậc 3 lượng giác Xem chi tiết
- Trắc nghiệm phương trình đẳng cấp bậc 2, bậc 3 lượng giác Xem chi tiết
- Dạng 5: Phương trình lượng giác đối xứng, phản đối xứng Xem chi tiết
- Trắc nghiệm phương trình lượng giác đối xứng, phản đối xứng Xem chi tiết
- Dạng 6: Cách giải các phương trình lượng giác đặc biệt Xem chi tiết
- Trắc nghiệm giải các phương trình lượng giác đặc biệt Xem chi tiết
- Dạng 7: Tìm nghiệm của phương trình lượng giác thỏa mãn điều kiện Xem chi tiết
- Trắc nghiệm tìm nghiệm của phương trình lượng giác thỏa mãn điều kiện Xem chi tiết
- Dạng 8: Phương pháp loại nghiệm, hợp nghiệm trong phương trình lượng giác Xem chi tiết
- Trắc nghiệm phương pháp loại nghiệm, hợp nghiệm trong phương trình lượng giác Xem chi tiết
- Giải phương trình lượng giác cơ bản Xem chi tiết
- Tìm nghiệm của phương trình lượng giác cơ bản trên khoảng (đoạn) Xem chi tiết
- Phương trình quy về phương trình lượng giác cơ bản Xem chi tiết
- Phương trình bậc nhất đối với hàm số lượng giác Xem chi tiết
- Phương trình quy về phương trình bậc nhất đối với hàm số lượng giác Xem chi tiết
- Phương trình bậc hai đối với hàm số lượng giác Xem chi tiết
- Phương trình quy về phương trình bậc hai đối với hàm số lượng giác Xem chi tiết
- Tìm nghiệm của phương trình lượng giác trong khoảng, đoạn Xem chi tiết
- Tìm điều kiện của tham số m để phương trình lượng giác có nghiệm Xem chi tiết
- Điều kiện để phương trình bậc nhất đối với sinx và cosx có nghiệm Xem chi tiết
- Giải phương trình bậc nhất đối với sinx và cosx Xem chi tiết
- Phương trình quy về phương trình bậc nhất đối với sinx và cosx Xem chi tiết
- Phương trình thuần nhất bậc 2 đối với sinx và cosx Xem chi tiết
- Phương trình đối xứng, phản đối xứng đối với sinx và cosx Xem chi tiết
- Phương trình lượng giác đưa về dạng tích Xem chi tiết
- Phương trình lượng giác không mẫu mực Xem chi tiết
- Tìm số nghiệm của phương trình lượng giác trong khoảng, đoạn Xem chi tiết
Bài tập tổng hợp chương
- 60 bài tập chương Hàm số lượng giác, Phương trình lượng giác có đáp án (phần 1) Xem chi tiết
- 60 bài tập chương Hàm số lượng giác, Phương trình lượng giác có đáp án (phần 2) Xem chi tiết
Cách tìm Tập xác định, tập giá trị của hàm số lượng giác
A. Phương pháp giải & Ví dụ
Ví dụ minh họa
Đáp án và hướng dẫn giải
1.
Vậy tập xác định của hàm số trên là
2.
Vậy tập xác định của hàm số trên là
3.
Vậy tập xác định của hàm số trên là
Cách tìm Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác
A. Phương pháp giải
Để tìm được giá trị lớn nhất;giá trị nhỏ nhất của hàm số ta cần chú ý:
+ Với mọi x ta luôn có: - 1 ≤ cosx ≤ 1; -1 ≤ sinx ≤ 1
+Với mọi x ta có: 0 ≤ |cosx| ≤ 1 ;0 ≤ |sinx| ≤ 1
+ Bất đẳng thức bunhia –copski: Cho hai bộ số (a1; a2) và (b1;b2) khi đó ta có:
(a1.b1+ a2.b2 )2 ≤ ( a12+ a22 ).( b12+ b22 )
Dấu “=” xảy ra khi: a1/a2 = b1/b2
+ Giả sử hàm số y= f(x) có giá trị lớn nhất là M và giá trị nhỏ nhất là m. Khi đó; tập giá trị của hàm số là [m; M].
+ Phương trình : a. sinx+ b. cosx= c có nghiệm khi và chỉ khi a2 + b2 ≥ c2
B. Ví dụ minh họa
Ví dụ 1. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= 1- 2|cos3x|.
A. M=3 ; m= - 1.
B. M= 1 ; m= -1.
C. M=2 ;m= -2.
D. M=0 ; m= -2.
Lời giải:.
Chọn B.
Với mọi x ta có : - 1 ≤ cos3x ≤ 1 nên 0 ≤ |cos3x| ≤ 1
⇒ 0 ≥ -2|cos3x| ≥ -2
Ví dụ 2: Hàm số y= 1+ 2cos2x đạt giá trị nhỏ nhất tại x= x0. Mệnh đề nào sau đây là đúng?
A.x0=π+k2π, kϵZ .
B.x0=π/2+kπ, kϵZ .
C.x0=k2π, kϵZ .
D.x0=kπ ,kϵZ .
Lời giải:.
Chọn B.
Ta có - 1 ≤ cosx ≤ 1 ⇒ - 0 ≤ cos2x ≤ 1 ⇒ 1 ≤ 1+2cos2x ≤ 3
Do đó giá trị nhỏ nhất của hàm số bằng 1 .
Dấu ‘=’ xảy ra khi cosx=0 ⇒ x=π/2+kπ, kϵZ .
Ví dụ 3: Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= sin2x+ 2cos2x.
A.M= 3 ;m= 0
B. M=2 ; m=0.
C. M=2 ; m= 1.
D.M= 3 ; m= 1.
Lời giải:.
Chọn C.
Ta có: y = sin2 x+ 2cos2x = (sin2x+ cos2x) + cos2x = 1+ cos2 x.
Do: -1 ≤ cosx ≤ 1 nên 0 ≤ cos2 x ≤ 1 ⇒ 1 ≤ cos2 x+1 ≤ 2
Suy ra giá trị lớn nhất của hàm số là M= 2 và giá trị nhỏ nhất của hàm số là m= 1
Cách giải phương trình lượng giác cơ bản
A. Phương pháp giải & Ví dụ
- Phương trình sinx = a (1)
♦ |a| > 1: phương trình (1) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn sinα = a.
Khi đó phương trình (1) có các nghiệm là
x = α + k2π, k ∈ Z
và x = π-α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và sinα = a thì ta viết α = arcsin a.
Khi đó các nghiệm của phương trình (1) là
x = arcsina + k2π, k ∈ Z
và x = π - arcsina + k2π, k ∈ Z.
Các trường hợp đặc biệt:
- Phương trình cosx = a (2)
♦ |a| > 1: phương trình (2) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn cosα = a.
Khi đó phương trình (2) có các nghiệm là
x = α + k2π, k ∈ Z
và x = -α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và cosα = a thì ta viết α = arccos a.
Khi đó các nghiệm của phương trình (2) là
x = arccosa + k2π, k ∈ Z
và x = -arccosa + k2π, k ∈ Z.
Các trường hợp đặc biệt:
- Phương trình tanx = a (3)
Điều kiện:
Nếu α thỏa mãn điều kiện và tanα = a thì ta viết α = arctan a.
Khi đó các nghiệm của phương trình (3) là
x = arctana + kπ,k ∈ Z
- Phương trình cotx = a (4)
Điều kiện: x ≠ kπ, k ∈ Z.
Nếu α thỏa mãn điều kiện và cotα = a thì ta viết α = arccot a.
Khi đó các nghiệm của phương trình (4) là
x = arccota + kπ, k ∈ Z
Ví dụ minh họa
Bài 1: Giải các phương trình lượng giác sau:
a) sinx = sin(π/6) c) tanx – 1 = 0
b) 2cosx = 1. d) cotx = tan2x.
Bài 2: Giải các phương trình lượng giác sau:
a) cos2 x - sin2x =0.
b) 2sin(2x – 40º) = √3
Bài 3: Giải các phương trình lượng giác sau:
Đáp án và hướng dẫn giải
Bài 1: Giải các phương trình lượng giác sau:
a) sinx = sinπ/6
b)
c) tanx=1⇔cosx= π/4+kπ (k ∈ Z)
d) cotx=tan2x
Bài 2: Giải các phương trình lượng giác sau:
a) cos2x-sin2x=0 ⇔cos2x-2 sinx cosx=0
⇔ cosx (cosx - 2 sinx )=0
b) 2 sin(2x-40º )=√3
⇔ sin(2x-40º )=√3/2
Bài 3: Giải các phương trình lượng giác sau:
a) sin(2x+1)=cos(3x+2)
b)
⇔ sinx+1=1+4k
⇔ sinx=4k (k ∈ Z)
Nếu |4k| > 1⇔|k| > 1/4; phương trình vô nghiệm
Nếu |4k| ≤ 1 mà k nguyên ⇒ k = 0 .Khi đó:
⇔sinx = 0 ⇔ x = mπ (m ∈ Z)
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Chuyên đề: Tổ hợp - Xác suất
- Chuyên đề: Dãy số - Cấp số cộng và cấp số nhân
- Chuyên đề: Giới hạn
- Chuyên đề: Đạo hàm
- Chuyên đề: Phép dời hình và phép đồng dạng trong mặt phẳng
- Chuyên đề: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
- Chuyên đề: Vectơ trong không gian. Quan hệ vuông góc trong không gian
- Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
- Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
- Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
- 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )
ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11
Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài hỗ trợ đăng ký : 084 283 45 85
Từ khóa » Bài Tập Hàm Số Lượng Giác Có đáp án
-
Bài Tập Hàm Số Lượng Giác Và Phương Trình ...
-
60 Bài Tập Trắc Nghiệm Hàm Số Lượng Giác Có đáp án (phần 1)
-
Bài Tập Hàm Số Lượng Giác Và Phương Trình Lượng Giác ... - Ôn Luyện
-
60 Bài Tập Hàm Số Lượng Giác, Phương Trình Lượng Giác Có đáp án
-
100 Bài Tập Hàm Số Lượng Giác Có đáp án Và Lời Giải Chi Tiết
-
Bài Tập Lượng Giác Lớp 10 Cơ Bản Có Đáp Án Chi Tiết. - Kiến Guru
-
200 Bài Tập Phương Trình Lượng Giác Lớp 11 Có Hướng Dẫn Giải Chi Tiết
-
415 Bài Tập Trắc Nghiệm Chương 1 Hàm Số, Phương Trình Lượng Giác ...
-
60 Bài Tập Hàm Số Lượng Giác, Phương Trình Lượng Giác Có đáp án ...
-
Các Dạng Toán Về Hàm Số Lượng Giác Và Bài Tập Vận Dụng - Toán Lớp ...
-
Bài Tập Về Các Hàm Số Lượng Giác Lớp 11 Nâng Cao "hiếm Có Khó Tìm"
-
Bài Tập Hàm Số Lượng Giác Và Phương Trình Lượng Giác Có đáp án Và ...
-
Bài Tập Trắc Nghiệm Hàm Số Lượng Giác Có Đáp Án Và Lời Giải
-
172 Bài Tập Trắc Nghiệm Hàm Số Lượng Giác Và Phương Trình Lượng ...