Các Dạng Bài Tập Logarit Có Lời Giải - TopLoigiai
Có thể bạn quan tâm
Dạng 1: Giải phương trình logarit bằng cách đưa về cùng cơ số
1. Định nghĩa
Phương trình lôgarit là phương trình có chứa ẩn số trong biểu thức dưới dấu lôgarit.
2. Phương trình lôgarit cơ bản
• loga x = b ⇔ x = ab (0 < a ≠ 1).
• loga f(x) = loga g(x)
3. Các bước giải phương trình logarit bằng cách đưa về cùng cơ số
* Bước 1. Tìm điều kiện của phương trình (nếu có).
* Bước 2. Sử dụng định nghĩa và các tính chất của lôgarit để đưa các lôgarit có mặt trong phương trình về cùng cơ số.
* Bước 3.Biến đổi phương trình về phương trình lôgarit cơ bản đã biết cách giải.
* Bước 4. Kiểm tra điều kiện và kết luận.
Ví dụ 1: Tính các giá trị sau:
Lời giải
Ví dụ 2:
Lời giải
Ví dụ 3: Giải phương trình
Lời giải
Tập nghiệm của phương trình đã cho là {1;2}.
Dạng 2: Giải phương trình logarit bằng cách mũ hóa
Phương trình loga[f(x)]=logb[g(x)] (với a>0;a≠1)
Ta đặt loga[f(x)]=logb[g(x)]=t
Khử x trong hệ phương trình để thu được phương trình ẩn t, giải pt này tìm t, từ đó tìm x
Ví dụ 1: Giải các phương trình sau:
a) log3(x+1)=log2x.
b) log5x=log7(x+2).
Lời giải
Ví dụ 2:
Giải các phương trình sau:
Lời giải:
Dạng 3: Giải phương trình logarit bằng cách đặt ẩn phụ
Giải phương trình: f[logag(x)] = 0 (0 < a ≠ 1).
• Bước 1: Đặt t = logag(x) (*).
• Bước 2: Tìm điều kiện của t (nếu có).
• Bước 3: Đưa về giải phương trình f(t) = 0 đã biết cách giải.
•Bước 4: Thay vào (*) để tìm x.
Một số lưu ý quan trọng khi biến đổi
1) logaf2(x) = 2loga|f(x)|
2) logaf2k(x) = 2kloga|f(x)|
3) logaf2k+1(x) = (2k+1)logaf(x)
4) loga(f(x)g(x)) = loga|f(x)| + loga|g(x)|
Ví dụ 3:Giải phương trình
Lời giải:
Dạng 4: Sử dụng tính đơn điệu để giải phương trình logarit
Giả sử phương trình có dạng f(x) = g(x) (*)
• Bước 1: Nhẩm được một nghiệm x0 của phương trình (thông thường chọn nghiệm lân cận 0).
• Bước 2: Xét các hàm số y = f(x)(C1) và y = g(x)(C2). Ta cần chứng minh một hàm đồng biến và một hàm nghịch biến hoặc một hàm đơn điệu và một hàm không đổi. Khi đó (C1) và (C2) giao nhau tại một điểm duy nhất có hoành độ x0. Đó chính là nghiệm duy nhất của phương trình (*).
Hoặc đưa phương trình về dạng f(x) = 0
• Bước 1: Nhẩm được hai nghiệm x1; x2 của phương trình (thường chọn nghiệm lân cận 0).
• Bước 2: Xét các hàm số y = f(x). Ta cần chứng minh f'(x) = 0 có nghiệm duy nhất và f'(x) đổi dấu khi đi qua nghiệm đó. Từ đây suy ra phương trình f(x) = 0 có nhiều nhất hai nghiệm.
Hoặc:
• Bước 1: Biến đổi phương trình về dạng f(u) = f(v) .
• Bước 2: Chứng minh hàm f(x)là hàm đơn điệu, suy ra u = v
Ví dụ 1: Giải phương trình log3 (x+2) + log7 (3x+4) = 2
Lời giải
Phương trình có một nghiệm x = 1
f(x) = log3(x+2) + log7(3x+4) ⇒ f'(x) > 0, nên f(x) đồng biến trên tập xác định ;g(x)=2là hàm hằng. Nên phương trình đã cho có một nghiệm duy nhất x = 1
Ví dụ 2: Giải phương trình log2 (x2-x-6)+x=log2 (x+2)+4
Lời giải
Phương trình (2)có một nghiệm x = 4
f(x) = log2(x-3), đồng biến trên tập xác định; g(x) = 4-x nghịch biến trên tập xác định. Nên phương trình đã cho có một nghiệm duy nhất x = 4.
Ví dụ 3:
Giải phương trình
Lời giải
⇔ log2 (x2-x+1)-log2 (2x2-4x+3) = x2-3x+2 ⇔ log2 (x2-x+1) + (x2-x+1) = log2 (2x2-4x+3)+(2x2-4x+3) (3)
Xét hàm số f(t) = log2 t+t có f'(t) > 0 nên hàm số đồng biến trên tập xác định. Khi đó có f(x2-x+1) = f(2x2-4x+3) ⇒ x2-x+1 = 2x2-4x+3 ⇔ x2-3x+2=0
Nên phương trình đã cho có tập nghiệm là {1;2}
Dạng 5: Cách giải phương trình logarit chứa tham số
♦ Dạng toán Tìm m để phương trình có số nghiệm cho trước:
• Bước 1. Tách m ra khỏi biến số x và đưa về dạng f(x)=A(m).
• Bước 2. Khảo sát sự biến thiên của hàm số f(x) trên D.
• Bước 3. Dựa vào bảng biến thiên để xác định giá trị tham số A(m) để đường thẳng y=A(m) nằm ngang cắt đồ thị hàm số y=f(x).
• Bước 4. Kết luận các giá trị của A(m) để phương trình f(x)=A(m) có nghiệm (hoặc có k nghiệm) trên D.
♦ Lưu ý
• Nếu hàm số y=f(x) có giá trị lớn nhất và giá trị nhỏ nhất trên D thì giá trị A(m) cần tìm là những m thỏa mãn:
• Nếu bài toán yêu cầu tìm tham số để phương trình có k nghiệm phân biệt, ta chỉ cần dựa vào bảng biến thiên để xác định sao cho đường thẳng y=A(m) nằm ngang cắt đồ thị hàm số y=f(x) tại k điểm phân biệt.
Hoặc sử dụng điều kiện có nghiệm của phương trình bậc hai với lưu ý sau.
♦ Nhắc lại: Phương trình bậc hai có hai nghiệm thỏa mãn
Hoặc sử dụng định lí đảo về dấu tam thức bậc hai:
Ví dụ minh họa
Ví dụ 1: Tìm tham số thực m để phương trình: log23 x+log3x+m = 0 có nghiệm.
Lời giải
Tập xác định D=(0;+∞).
Đặt log3x=t. Khi đó phương trình trở thành t2+t+m=0 (*)
Phương trình đã cho có nghiệm khi phương trình (*) có nghiệm: Δ=1-4m ≥ 0 ⇔ m ≤ 1/4.
Vậy để phương trình có nghiệm thực thì: m ≤ 1/4.
Ví dụ 2: Tìm tham số m để phương trình log2(5x-1)log4(2.5x-2)=m có nghiệm thực x ≥ 1.
Lời giải
Điều kiện: 5x-1 > 0 ⇔ x > 0
log2(5x-1)log4(2.5x-2)=m
⇔ log2(5x-1) 1/2 log2(2(5x-1))=m
⇔ log2(5x-1)(1+log2(5x-1))=2m
⇔ log22 (5x-1)+log2(5x-1)=2m
Đặt log2(5x-1) = t. Khi đó phương trình đã cho trở thành t2+ t- 2m = 0 (*)
Phương trình đã cho có nghiệm x ≥ 1 khi phương trình (*)có nghiệm
Vậy phương trình có nghiệm thực x ≥ 1 thì m ≥ 3.
Từ khóa » Bài Tập Hàm Số Logarit Cơ Bản
-
Các Dạng Bài Tập Về Hàm Số Mũ, Lũy Thừa, Lôgarit
-
Các Dạng Bài Tập Hàm Số Mũ, Lũy Thừa, Lôgarit Chọn ...
-
100 Bài Tập ôn Tập Hàm Số Mũ Logarit Có đáp án Chi Tiết
-
Tổng ôn Tập Hàm Số Mũ Và Logarit Siêu Chi Tiết
-
Full Bộ Bài Tập Hàm Số Mũ Và Logarit Có Giải Chi Tiết
-
100 Bài Tập Trắc Nghiệm Hàm Số Mũ - Hàm Số Logarit | Toán Học, Lớp 12
-
Các Dạng Bài Tập Hàm Số Mũ, Lũy Thừa, Lôgarit Chọn Lọc ... - Haylamdo
-
Bài Tập Hàm Số Lũy Thừa, Hàm Số Mũ Và Hàm Số Logarit - Diệp Tuân
-
Mũ – Logarit - Lũy Thừa
-
Bài Tập Hàm Số Lũy Thừa, Hàm Số Mũ Và Hàm Số Logarit
-
Bài Tập Hàm Số Mũ Và Logarit
-
[PDF] Bài Tập Hàm Số Mũ Và Logarit Cơ Bản - 5pdf
-
Lý Thuyết, Bài Tập Về Hàm Số Lũy Thừa, Hàm Số Mũ, Hàm Số Logarit Có ...
-
Hàm Số Logarit, Hàm Số Mũ: Lý Thuyết & Bài Tập (Kèm Tài Liệu)