Các Dạng Bài Tập Nguyên Hàm Chọn Lọc, Có đáp án - Toán Lớp 12

Các dạng bài tập Nguyên hàm chọn lọc, có đáp án - Toán lớp 12 ❮ Bài trước Bài sau ❯

Các dạng bài tập Nguyên hàm chọn lọc, có đáp án

Với Các dạng bài tập Nguyên hàm chọn lọc, có đáp án Toán lớp 12 tổng hợp các dạng bài tập, trên 200 bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Nguyên hàm từ đó đạt điểm cao trong bài thi môn Toán lớp 12.

Các dạng bài tập Nguyên hàm chọn lọc, có đáp án

  • Bảng công thức nguyên hàm đầy đủ Xem chi tiết
  • Phương pháp tính nguyên hàm của các hàm số cơ bản cực hay Xem chi tiết
  • Phương pháp tính nguyên hàm đổi biến số cực hay Xem chi tiết
  • Phương pháp tính nguyên hàm từng phần cực hay Xem chi tiết
  • Dạng 1: Tìm nguyên hàm của hàm số Xem chi tiết
  • Trắc nghiệm tìm nguyên hàm của hàm số Xem chi tiết
  • Dạng 2: Tìm nguyên hàm bằng phương pháp đổi biến số Xem chi tiết
  • Trắc nghiệm tìm nguyên hàm bằng phương pháp đổi biến số Xem chi tiết
  • Dạng 3: Tìm nguyên hàm bằng phương pháp từng phần Xem chi tiết
  • Trắc nghiệm tìm nguyên hàm bằng phương pháp từng phần Xem chi tiết
  • Dạng 4: Tìm nguyên hàm của hàm số hữu tỉ Xem chi tiết
  • Trắc nghiệm tìm nguyên hàm của hàm số hữu tỉ Xem chi tiết
  • Dạng 5: Tìm nguyên hàm thỏa mãn điều kiện cho trước Xem chi tiết
  • Trắc nghiệm tìm nguyên hàm thỏa mãn điều kiện cho trước Xem chi tiết
  • Nguyên hàm của hàm đa thức, hàm phân thức Xem chi tiết
  • Nguyên hàm của hàm số mũ, hàm số logarit Xem chi tiết
  • Nguyên hàm của hàm số lượng giác Xem chi tiết
  • Tìm nguyên hàm của hàm đa thức bằng phương pháp đổi biến số Xem chi tiết
  • Tìm nguyên hàm của hàm phân thức bằng phương pháp đổi biến số Xem chi tiết
  • Tìm nguyên hàm của hàm số mũ, logarit bằng phương pháp đổi biến số Xem chi tiết
  • Tìm nguyên hàm của hàm số lượng giác bằng phương pháp đổi biến số Xem chi tiết
  • Tìm nguyên hàm của hàm chứa căn thức bằng phương pháp đổi biến số Xem chi tiết
  • Tìm nguyên hàm của hàm lượng giác bằng phương pháp nguyên hàm từng phần Xem chi tiết
  • Tìm nguyên hàm của hàm số mũ, logarit bằng phương pháp nguyên hàm từng phần Xem chi tiết

Bài tập trắc nghiệm

  • 150 bài tập trắc nghiệm Nguyên hàm, Tích phân và ứng dụng có lời giải (cơ bản) Xem chi tiết
  • 150 bài tập trắc nghiệm Nguyên hàm, Tích phân và ứng dụng có lời giải (nâng cao) Xem chi tiết

Cách tìm nguyên hàm của hàm số

A. Phương pháp giải & Ví dụ

I. NGUYÊN HÀM VÀ TÍNH CHẤT

1. Nguyên hàm

Định nghĩa: Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K.

Định lí:

1) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.

2) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.

Do đó F(x)+C, C ∈ R là họ tất cả các nguyên hàm của f(x) trên K. Ký hiệu ∫f(x)dx = F(x) + C.

2. Tính chất của nguyên hàm

Tính chất 1: (∫f(x)dx)' = f(x) và ∫f'(x)dx = f(x) + C

Tính chất 2: ∫kf(x)dx = k∫f(x)dx với k là hằng số khác 0.

Tính chất 3: ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx

3. Sự tồn tại của nguyên hàm

Định lí: Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.

4. Bảng nguyên hàm của một số hàm số sơ cấp

Nguyên hàm của hàm số sơ cấp Nguyên hàm của hàm số hợp (u = u(x)
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

II. PHƯƠNG PHÁP TÍNH NGUYÊN HÀM

Phương pháp dùng định nghĩa vá tính chất

+ Biến đổi các hàm số dưới dấu nguyên hàm về dạng tổng, hiệu của các biểu thức chứa x.

+ Đưa các mỗi biểu thức chứa x về dạng cơ bản có trong bảng nguyên hàm.

+ Áp dụng các công thức nguyên hàm trong bảng nguyên hàm cơ bản.

Ví dụ minh họa

Bài 1: Tìm nguyên hàm của hàm số

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 2: Tìm nguyên hàm của hàm số

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Tìm nguyên hàm bằng phương pháp đổi biến số

A. Phương pháp giải & Ví dụ

STT Dạng tích phân Cách đặt Đặc điểm nhận dạng
1 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải t = f(x) Biểu thức dưới mẫu
2 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải t = t(x) Biểu thức ở phần số mũ
3 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải t = t(x) Biểu thức trong dấu ngoặc
4 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Căn thức
5 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải t = lnx dx/x đi kèm biểu thức theo lnx
6 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải t = sinx cosx dx đi kèm biểu thức theo sinx
7 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải t = cosx sinx dx đi kèm biểu thức theo cosx
8 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải t = tanx Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải đi kèm biểu thức theo tanx
9 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải t = cotx Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải đi kèm biểu thức theo cotx
10 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải t = eax eax dx đi kèm biểu thức theo eax
Đôi khi thay cách đặt t = t(x) bởi t = m.t(x) + n ta sẽ biến đổi dễ dàng hơn.

Ví dụ minh họa

Bài 1: Tìm các họ nguyên hàm sau đây:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 2: Tìm các họ nguyên hàm sau đây:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 3: Tìm các họ nguyên hàm sau đây:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Cách tìm nguyên hàm bằng phương pháp từng phần

A. Phương pháp giải & Ví dụ

Với bài toán tìm nguyên hàm của các hàm số dạng tích (hoặc thương) của hai hàm số “khác lớp hàm” ta thường sử dụng phương pháp nguyên hàm từng phần theo công thức

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dưới đây là một số trường hợp thường gặp như thế (với P(x) là một đa thức theo ẩn x)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ví dụ minh họa

Bài 1: Tìm họ nguyên hàm của hàm số

a) ∫xsinxdx

b) ∫ex sinx dx

Hướng dẫn:

a) Xét ∫xsinxdx

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Theo công thức tính nguyên hàm từng phần, ta có

F(x) = ∫xsinxdx = -xcosx+∫cosxdx = -xcosx+sinx+C

b) Xét F(x) = ∫ex sinx dx

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

F(x) = ex sinx-∫ex cosx dx = ex sinx-G(x) (1)

Với G(x) = ∫ex cosx dx

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

G(x) = ex cosx+∫ex sinx dx+C'=ex cosx+F(x)+C' (2)

Từ (1) và (2) ta có F(x) = ex sinx-ex cosx - F(x) - C'

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ghi nhớ: Gặp ∫emx+n.sin(ax+b)dx hoặc ∫emx+n.cos(ax+b)dx ta luôn thực hiện phương pháp nguyên hàm từng phần 2 lần liên tiếp.

Bài 2: Tìm họ nguyên hàm của hàm số

a) ∫x.2x dx

b) ∫(x2-1) ex dx

Hướng dẫn:

a) Xét ∫x.2x dx

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

b)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Suy ra ∫f(x)dx = (x2-1) ex - ∫2x.ex dx

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Suy ra ∫f(x)dx = (x2-1) ex - ∫2x.ex dx = (x2-1) ex-(2x.ex - ∫2.ex dx)

= (x2-1) ex - 2x.ex + 2.ex+C = (x-1)2 ex + C.

Bài 3: Tìm họ nguyên hàm của hàm số

a) ∫2xln(x-1)dx

b) Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

a) Xét ∫2xln(x-1)dx

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

b)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Từ khóa » Toán Nguyên Hàm Lớp 12