Các Dạng Bài Tập Về Tập Hợp Chọn Lọc Có Lời Giải - Toán ... - Haylamdo

Các dạng bài tập về Tập hợp chọn lọc có lời giải - Toán lớp 10 ❮ Bài trước Bài sau ❯

Các dạng bài tập về Tập hợp chọn lọc có lời giải

Với Các dạng bài tập về Tập hợp chọn lọc có lời giải Toán lớp 10 tổng hợp các dạng bài tập, bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Tập hợp từ đó đạt điểm cao trong bài thi môn Toán lớp 10.

Các dạng bài tập về Tập hợp chọn lọc có lời giải

  • Lý thuyết Tập hợp và các phép toán trên tập hợp Xem chi tiết
  • Dạng 1: Cách xác định tập hợp Xem chi tiết
  • Dạng 2: Các phép toán trên tập hợp Xem chi tiết
  • Dạng 3: Giải toán bằng biểu đồ Ven Xem chi tiết
  • Bài tập Tập hợp và các phép toán trên tập hợp (có đáp án) Xem chi tiết

Cách xác định, cách viết tập hợp

Phương pháp giải

1: Với tập hợp A, ta có 2 cách:

Cách 1: liệt kê các phần tử của A: A={a1; a2; a3;..}

Cách 2: Chỉ ra tính chất đặc trưng cho các phần tử của A

2:Tập hợp con

Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì ta nói A là một tập hợp con của B, kí hiệu là A ⊂ B.

A ⊂ B ⇔ ∀x : x ∈ A ⇒ x ∈ B.

A ⊄ B ⇔ ∀x : x ∈ A ⇒ x ∉ B.

Tính chất:

1) A ⊂ A với mọi tập A.

2) Nếu A ⊂ B và B ⊂ C thì A ⊂ C.

3) ∅ ⊂ A với mọi tập hợp A.

Ví dụ minh họa

Ví dụ 1: Viết mỗi tập hợp sau bằng cách liệt kê các phần tử của nó:

a) A={x ∈ R|(2x - x2 )(2x2 - 3x - 2)=0}.

b) B={n ∈ N|3 < n2 < 30}.

Hướng dẫn:

a) Ta có:

(2x - x2 )(2x2 - 3x - 2) =0 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

b) 3 < n2 < 30 ⇒ √3 < |n| < √30

Do n ∈ N nên n ∈ {2;3;4;5}

⇒ B = {2;3;4;5}.

Ví dụ 2: Viết mỗi tập hợp sau bằng cách chỉ rõ tính chất đặc trưng cho các phần tử của nó:

a) A = {2; 3; 5; 7}

b) B = {-3; -2; -1; 0; 1; 2; 3}

c) C = {-5; 0; 5; 10; 15}.

Hướng dẫn:

a) A là tập hợp các số nguyên tố nhỏ hơn 10.

b) B là tập hơp các số nguyên có giá trị tuyệt đối không vượt quá 3.

B={x ∈ Z||x| ≤ 3}.

c) C là tập hợp các số nguyên n chia hết cho 5, không nhỏ hơn -5 và không lớn hơn 15.

C={n ∈ Z|-5 ≤ n ≤ 15; n ⋮ 5}.

Ví dụ 3: Cho tập hợp A có 3 phần tử. Hãy chỉ ra số tập con của tập hợp A.

Hướng dẫn:

Giả sử tập hợp A={a;b;c}. Các tập hợp con của A là:

∅ ,{a},{b},{c},{a;b},{b;c},{c;a},{a;b;c}

Tập A có 8 phần tử

Chú ý: Tổng quát, nếu tập A có n phần tử thì số tập con của tập A là 22 phần tử.

Cách giải bài tập các phép toán trên tập hợp

Phương pháp giải

Hợp của 2 tập hợp:

x ∈ A ∪ B ⇔Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Giao của 2 tập hợp

x ∈ A ∩ B ⇔Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hiệu của 2 tập hợp

x ∈ A \ B ⇔Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Phần bù

Khi B ⊂ A thì A\B gọi là phần bù của B trong A, kí hiệu là CA B.

Ví dụ minh họa

Ví dụ 1: Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A ∪ B;A ∩ B;A \ B;B \ A.

Hướng dẫn:

1. A ∪ B: tập hợp các học sinh hoặc học lớp 10 hoặc học môn Tiếng Anh của trường em.

2. A ∩ B: tập hợp các học sinh lớp 10 học môn Tiếng Anh của trường em.

3. A \ B: tập hợp các học sinh học lớp 10 nhưng không học môn Tiếng Anh của trường em.

4. B \ A: tập hợp các học sinh học môn Tiếng Anh của trường em nhưng không học lớp 10 của trường em.

Ví dụ 2: Cho hai tập hợp:

A = { x ∈ R | x2 - 4x + 3 = 0};

B = { x ∈ R | x2 - 3x + 2 = 0}.

Tìm A ∪ B ; A ∩ B ; A \ B ; B \ A.

Hướng dẫn:

Ta có: A={1;3} và B={1;2}

A ∪ B={1;2;3}

A ∩ B={1}

A \ B={3}

B \ A={2}

Ví dụ 3: Cho đoạn A=[-5;1] và khoảng B =(-3; 2). Tìm A ∪ B; A ∩ B.

Hướng dẫn:

A ∪ B=[-5;2)

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

A ∩ B=(-3;1]

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Cách giải toán bằng biểu đồ Ven

Phương pháp giải

- Vẽ các vòng tròn đại diện các tập hợp (mỗi vòng tròn là một tập hợp) lưu ý 2 vòng tròn có phần chung nếu của 2 tập hợp khác rỗng.

- Dùng các biến để chỉ số phần tử của từng phần không giao nhau.

- Từ giả thiết bài toán, lập hệ phương trình và giải tìm các biến.

Ví dụ minh họa

Ví dụ 1:Trong kì thi học sinh giỏi cấp trường, lớp 10A có 17 bạn được công nhận học sinh giỏi văn, 25 bạn học sinh giỏi toán. Tìm số học sinh đạt cả 2 giải văn và toán, biết lớp 10A có 45 bạn và có 13 bạn không đạt học sinh giỏi.

Hướng dẫn:

Biểu diễn tập hợp các học sinh giỏi văn và các học sinh giỏi toán bằng 2 đường cong kín và tập hợp các học sinh lớp 10A bằng hình chữ nhật như hình bên dưới.

Gọi x là số học sinh giỏi văn không giỏi toán; y là số học sinh giỏi cả văn và toán; z là số học sinh chỉ giỏi toán mà không giỏi văn và t là số học sinh không đạt học sinh giỏi.

Theo biểu đồ giả thiết, ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Cộng (1) với (2) rồi trừ cho (3) ta được: Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

(x + y) + (y + z) – (x + y + z + t) = 17 + 25 - 45

⇒ y - t = - 3 ⇒ y = t – 3 = 10

Vậy lớp 10A có 10 học sinh giỏi cả 2 môn văn và toán.

Từ khóa » Ví Dụ Về Tập Hợp Lớp 10