Các Dạng Phán đoán Phức Và Bảng Chân Lý Của Chúng - Tài Liệu Text
Có thể bạn quan tâm
- Trang chủ >>
- Kinh Doanh - Tiếp Thị >>
- Quản trị kinh doanh
Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (827.38 KB, 20 trang )
Header Page 1 of 145.TRƯỜNG ĐẠI HỌCSƯ PHẠM KỸ THUẬT TP.HỒ CHÍ MINHHCMC University of Technology and EducationKHOA: LÝ LUẬN CHÍNH TRỊĐỀ TÀI : CÁC DẠNG PHÁN ĐOÁNPHỨC VÀ BẢNG CHÂN LÝ CỦACHÚNG.Tiểu luận cuối khóaMôn học : NHẬP MÔN LOGIC HỌCMã số lớp HP : INLO220405Giáo viên hướng dẫn : ĐẶNG THỊ MINH TUẤNNhóm thực hiện : LOGIC ỨNG DỤNGHọc kỳ 1 – Năm Học: 2016 - 2018Footer Page 1 of 145.Header Page 2 of 145.Họ và tên sinh viên thực hiện đề tài :Nhận Xét Của Giáo ViênFooter Page 2 of 145.Giáo Viên Ký TênHeader Page 3 of 145.Mục LụcMỞ ĐẦU ..................................................................................................................................1NỘI DUNG : .............................................................................................................................2PHẦN I: PHÁN ĐOÁN PHỨC VÀ CÁC LOẠI PHÁN ĐOÁN PHỨC1.1 - ĐỊNH NGHĨA PHÁN ĐOÁN PHỨC ........................................................................................21.2 - CÁC LOẠI PHÁN ĐOÁN1.2.1 - PHÁN ĐOÁN HỘI ( ^ ) : ...................................................................................................21.2.2 - PHÁN ĐOÁN TUYỂN ( V ) : ...............................................................................................31.2.2.1 - TUYỂN TƯƠNG ĐỐI : ( TUYỂN YẾU – V ) .......................................................................31.2.2.2 - TUYỂN CHẶT ( TUYỂN MẠNH) : A V B : .........................................................................41.2.3 - PHÁN ĐOÁN KÉO THEO : A => B : ....................................................................................51.2.4 – PHÁN ĐOÁN TƯƠNG ĐƯƠNG: A ↔ B : .........................................................................6PHẦN II: PHÂN TÍCH VÍ DỤ MINH HỌA CỦA TỪNG PHÁN ĐOÁN2.1 VÍ DỤ PHÁN ĐOÁN HỘI ......................................................................................................72.2 - VÍ DỤ PHÁN ĐOÁN TUYỂN : ...............................................................................................82.2.1- ĐỐI VỚI PHÉP TUYỂN KHÔNG CHẶT : ..............................................................................82.2.2 - ĐỐI VỚI PHÉP TUYỂN CHẶT :...........................................................................................92.3 - VÍ DỤ PHÁN ĐOÁN ĐIỀU KIỆN : ....................................................................................... 102.3.1 VÍ DỤ ĐỐI VỚI ĐIỀU KIỆN ĐỦ : ....................................................................................... 112.3.2 VÍ DỤ ĐỐI VỚI ĐIỀU KIỆN CẦN:...................................................................................... 112.3.3 VÍ DỤ ĐỐI VỚI ĐIỀU KIỆN CẦN VÀ ĐỦ……………………………………………………………………………..122.4 - VÍ DỤ PHÁN ĐOÁN PHỦ ĐỊNH : ..................................................................................... 12PHẦN KẾT LUẬN : ................................................................................................................... 14Footer Page 3 of 145.Header Page 4 of 145.1Mở đầu1.Lý do chọn đề tàiLogic học là môn khoa học nghiên cứu về cấu trúc của sự suy luận chínhxác. Cùng với ngôn ngữ, logic là phương tiện, là công cụ để con người hiểu biết,trao đổi tư tưởng với nhau.Trong quá trình lao động và giao tiếp, con người đã học cách suy luận hợplogic, rất lâu trước khi khoa học logic ra đời. Trong nhà trường, nhất là ở bộmôn Toán học, học sinh được rèn luyện về suy luận logic học, suy luận nóichung là hợp logic. Tuy nhiên, vì thiếu nhữngkiến thức cóthệ thống về logic họcnên không ít người không ý thức rõ, không phân tích được sự chính xác hay sailầm trong suy luận của bản thân mình và của người khác.Trong công tác giảng dạy, người giáo viên ở bậc phổ thông không khôngchỉ đơn thuần truyền thụ kiến thức cho học sinh mà còn phải biết rèn luyện kỹnăng, nâng cao tầm hiểu biết, phát huy tính sáng tạo, linh hoạt cho học sinhthông qua những giờ luyện tập. Đối với môn Toán, việc giải bài tập được xem làmột cách để rèn luyện những kỹ năng ấy. Tuy nhiên, để giải được những bài tậpnày, ngoài việc phải vận dụng kiến thức đã học, người giáo viên cần dạy cho họcsinhbiết cáchphán đoán, suy luận một cách chính xác nhất. Để làm được điềunày, trước hết cần phải nắm vững kiến thức về logic học.2. Mục tiêu nghiên cứuBên cạnh mục đích học tập, nâng cao vốn hiểu biết để rèn luyện bản thân vềsuy luận, cần hướng tới sự chính xác trong việc sử dụng tính logic vào trong suyluận, từ đó có cơ sở để phân tích sự chính xác hay sai lầm trong suy luận củamình hay người khác, nâng cao hiệu quả suy luận logic.3. Phương pháp thực hiệnFooter Page 4 of 145.Header Page 5 of 145.2NỘI DUNGI - PHÁN ĐOÁN PHỨC VÀ CÁC LOẠI PHÁN ĐOÁN PHỨC1.1 - Định nghĩa phán đoán phức ( phán đoán phức hợp ) :Phán đoán phức là phán đoán được tạo thành từ các phán đoán đơn nhờcác liên từ logic. Nếu phán đoán phức chỉ có một loại liên từ logic, thì gọi làphán đoán phức cơ bản. Còn nếu có từ hai loại liên từ logic trở lên thì gọi làphán đoán đa phức hợp.1.2 - Các loại phán đoán phức :Dựa vào quan hệ của các phán đoán thành phần, ta có thể chia phán đoánphức thành các kiểu sau :1.2.1 - Phán đoán hội ( ^ ) :Là phán đoán thể hiện quan hệ cùng tồn tại của các đối tượng, thuộc tính trongcác phán đoán thành phần.VD: Trời mưa và đường ướt.Phán đoán trên bao gồm 2 phán đoán đơn :a – trời mưab – đường ướtLiên từ logic “và” thể hiện quan hệ tồn tại đồng thời của hai hiện tượng.Công thức tổng quát : A ^ B :Trong ngôn ngữ thường ngày liên từ hội thường là : và; vừa…, vừa; chẳngnhững…, mà còn… v.v..Giá trị logic của phán đoán phức phụ thuộc vào giá trị chân lý của các phán đoánFooter Page 5 of 145.Header Page 6 of 145.3thành phần, và được xác định dựa vào đặc điểm của phán đoán phức đó. Vì phéphội thể hiện sự tồn tại đồng thời của các thành phần trong phán đoán nên nó chỉđúng khi các phán đoán thành phần cấu thành nên nó đúng, và sai trong 3trường hợp còn lại.Bảng chân lý :A^B1111000010001.2.2 - Phán đoán tuyển ( v ) :Phán đoán tuyển là phán đoán thể hiện quan hệ lựa chọn tồn tại giữa cácđối tượng, thuộc tính phản ánh trong các phán đoán thành phần, trong đó phải cómột thành phần tồn tại. Tuy nhiên, sự lựa chọn tồn tại này có thể xảy ra theo 2phương án, tạo nên 2 loại phán đoán tuyển:1.2.2.1 - Tuyển tương đối : ( Tuyển yếu – v ) :Là phép tuyển mà lựa chọn tồn tại đối tượng, thuộc tính này không nhấtthiết phải loại trừ tồn tại của đối tượng, thuộc tính kia.VD : Bạn ăn táo hoặc ăn cam.Ta thấy, một trong hai hành động này có thể tồn tại, hoặc cả hai đều tồn tại.Công thức tổng quát : A v BTrong ngôn ngữ thường ngày, liên từ logic tuyển thường là : hoặc, hay là, ítFooter Page 6 of 145.Header Page 7 of 145.4nhất… v.v..Giá trị logic của phán đoán tuyển yếu đúng khi ít nhất 1 phán đoán thànhphần đúng, chỉ sai khi cả hai phán đoán thanh phần sai.Bảng chân lý :AvB1111100110001.2.2.2 - Tuyển chặt ( Tuyển mạnh) : A v BLà phép tuyển mà sự lựa chọn tồn tại của đối tượng này nhất thiết phải loạitrừ sự tồn tại của những đối tượng khác. Chúng không thể cùng tồn tại.VD : Nếu gọi 3 góc trong một tam giác là A , B và C thì hoặc A bằng 90 độ,hoặc B bằng 90 độ, hoặc C bằng 90 độ.Ta thấy một đối tượng tồn tại ( ví dụ góc A bằng 90 độ ) thì hai đối tượngcòn lại sẽ không tồn tại.Công thức tổng quát : A v BTrong ngôn ngữ thường ngày, phán đoán tuyển mạnh chỉ đúng khi và chỉkhi một trong các phán đoán thành phần đúng, và sai trong 3 trường hợp còn lạiFooter Page 7 of 145.Header Page 8 of 145.5Bảng chân lý :AvB1011100110001.2.3 - Phán đoán kéo theo : A => BLà phán đoán phức thể hiện quan hệ nhân quả của các đối tượng, thuộc tínhkhách quan. Trong đó phải có một đối tượng, thuộc tính là nguyên nhân, còn lạilà kết quả.VD : Nếu học tập chăm chỉ thì kết quả sẽ tốt.Ta thấy hiện tượng a: ”học tập chăm chỉ” lôi keó sự tồn tại của hiện tương b:“kết quả sẽ tốt”.Công thức tổng quát : A => BBản thân các phán đoán nguyên nhân và kết quả nhiều khi là hội và tuyển,không đơn giản chỉ là phán đoán đơn như ví dụ trên.VD : Nếu học tập tốt và có thành tích nghiên cứu khoa học, thì sinh viên sẽ đượcthưởng hoặc chuyển tiếp lên bậc học cao hơn.Trong ngôn ngữ thường ngày, liên từ logic kéo theo thường là : [Nếu, muốn, hễ,để,…], [thì, vì, do, …] v.v..Đặc trưng cơ bản của phán đoán kéo theo chân thực là khi điều kiện chân thựcFooter Page 8 of 145.Header Page 9 of 145.6thì hệ quả không thể là giả dối, vì thế nếu đã có điều kiện thì đương nhiên sẽ cóhệ quả, nhưng không có chiều ngược lại, nghĩa là sự tồn tại của hệ quả khôngchỉ do một điều kiên. Điều này thể hiện tính chất của mối liên hệ nhân quả: cónguyên nhân thì sẽ có kết quả, một nguyên nhân có thể cho nhiều hệ quả và mộthệ quả có thể do nhiều nguyên nhân sinh ra.Khoa học còn sử dụng rộng rãi các khái niệm “điều kiện cần” và “điềukiện đủ”. Điều kiện cần là nếu có hệ quả thì có thể suy ra được tiền đề. Điềukiện đủ là khi có tiền đề có thể suy ra được hệ quả.Căn cứ vào đặc trưng của phép kéo theo thì giá trị logic của nó chỉ sai khiphán đoán về điều kiện là đúng, nhưng phán đoán hệ quả là sai, ba trường hợpcòn lại của phán đoán kéo theo đều có giá trị logic đúng.Bảng chân lý :A=>B1111000110101.2.4 - Phán đoán tương đương : A ↔ BLà phán đoán phức thể hiện quan hệ nhân quả hai chiều giữa các đối tượng,thuộc tính. Trong đó đối hiện, thuộc tính này vừa có thể là nguyên nhân, vừa cóthể là kết quả của đối tượng, thuộc tính kia và ngược lại.Footer Page 9 of 145.Header Page 10 of 145.7VD : Một số chia hết cho 3, khi và chỉ khi tổng các chữ số tạo nên nó chia hếtcho 3.Ta thấy phán đoán này có nghĩa : Nếu một số có tổng các chữ số tạo nên nóchia hết cho 3 thì số đó sẽ chia hết cho 3. Và nếu một chữ số chia hết cho 3 thìtổng các chữ số tạo nên nó sẽ chia hết cho 3.Công thức tổng quát : A ↔ BTrong ngôn ngữ hằng ngày, liên từ logic tương đương là : nếu và chỉ nếu,khi và chỉ khi , v.v..Căn cứ vào đặc trưng của phép tương đương thì nó đúng khi các phán đoánthành phần có cùng giá trị đúng hoặc sai, và nó sai khi các phán đoán thànhkhông có cùng giá trị logic.Bảng chân lý :A↔B111100001010II - Phân tích ví dụ minh họa của từng phán đoán2.1 Ví dụ Phán đoán hội :Ví dụ : Hoa chăm chỉ và Hoa học giỏi.P: Hoa chăm chỉFooter Page 10 of 145.Header Page 11 of 145.8Q: Hoa học giỏi-Phán đoán P ∧ Q chỉ đúng khi cả P lẫn Q cùng đúng, (sai trong các trườnghợp khác).-Cụ thể : khi P (đ), Q (đ) thì P ∧ Q (đ). P (đ), Q (s) thì P ∧ Q (s) P (đ), Q (đ) thì P ∧ Q (s) P (s), Q (s) thì P ∧ Q (s)Sau đây là bảng chân lý của phép hội :2.2 - Ví dụ Phán đoán tuyển: gồm ví dụ phép tuyển chặt và ví dụ phép tuyểnP1100Q1010P˄Q1000không chặt2.2.1- Đối với phép tuyển không chặt:Ví dụ : Đồng hồ hết pin hoặc là đồng hồ bị hỏng.P: Đồng hồ hết pinQ: Đồng hồ bị hỏngPhán đoán P ∨ Q chỉ sai khi cả P lẫn Q cùng sai (đúng trong mọi trường hợpkhác).Cụ thể : - Khi P (đ), Q (đ) thì P ∨ Q (đ) P (đ), Q (s) thì P ∨ Q (đ)Footer Page 11 of 145.Header Page 12 of 145.9 P (s), Q (đ) thì P ∨ Q (đ) P (s), Q (s) thì P ∨ Q (s) Bảng chân lý của phép tuyển.-P1100Q1010P˅Q1110Như vậy phán đoán : Đồng hồ hết pin hoặc là (đồng hồ) bị hỏng, chỉ sai khi“Đồng hồ không bị hết pin” (P sai) và “Đồng hồ cũng không bị hỏng” (Qsai). Các trường hợp sau đây phán đoán đều đúng. Đồng hồ hết pin (P đúng), Đồng hồ bị hỏng (Q đúng) Đồng hồ không hết pin (P sai), Đồng hồ bị hỏng (Q đúng) Đồng hồ hết pin (P đúng), Đồng hồ không bị hỏng (Q sai)-Để cho gọn, trong phép tuyển người ta cũng bỏ bớt một số từ mà phán đoánvẫn còn nguyên giá trị. Ví dụ : Đồng hồ hết pin hoặc bị hỏng.2.2.2 - Đối với phép tuyển chặt :Ví dụ :Con vật kia là con mèo hoặc con chuột.P: Con vật kia là con mèoQ: Con vật kia là con chuộtPhán đoán P ∨ Q chỉ đúng khi một trong hai phán đoán thành phần đúng cònphán đoán kia sai (sai trong mọi trường hợp khác).Footer Page 12 of 145.Header Page 13 of 145.10Cụ thể : - Khi P (đ), Q (đ) thì P ∨Q (s) P (đ), Q (s) thì P ∨ Q (đ) P (s), Q (đ) thì P ∨Q (đ) P (s), Q (s) thì P ∨Q (s) Bảng chân lý của phép tuyển chặt.P1100Q1010P˅Q0110Ví dụ : Phán đoán : Con vật kia là con mèo hoặc con chuột đúng trong nhữngtrường hợp sau :-Con vật kia là con mèo (P đúng), không phải con chuột (Q sai).-Con vật kia không phải là con mèo (P sai), mà là con chuột (Q đúng).Sai trong các trường hợp :-Con vật kia vừa là con mèo (P đúng), vừa là con chuột (Q đúng).-Con vật kia không phải là con mèo (P sai), cũng không phải con chuột (Qsai).2.3 - Ví dụ Phán đoán điều kiện : gồm ví dụ điều kiện đủ, ví dụ điều kiện cần,ví dụ điều kiện cần và đủ.Footer Page 13 of 145.Header Page 14 of 145.112.3.1 Ví dụ Đối với điều kiện đủ:Ví dụ : Nếu đốt nóng thanh sắt thì chiều dài của nó tăng lên.P: đốt nóng thanh sắtQ: Chiều dài của nó tăng lên-Đốt nóng thanh sắt là điều kiện đủ để chiều dài của nó tăng lên.-Muốn chiều dài của thanh sắt tăng lên thì chỉ cần đốt nóng nó.Có P là đủ để có Q.Muốn có Q thì cần có P là đủ.Muốn có Q chỉ cần có P.Tóm lại, P được gọi là điều kiện đủ của Q khi có P thì có Q.2.3.2 Ví Dụ Đối với điều kiện cần:Ví dụ : Biết ngoại ngữ là điều kiện cần để được làm việc trong các công ty nướcngoài.P: Biết ngoại ngữQ: Làm được trong công ty nước ngoàiMuốn được làm việc trong các công ty nước ngoài thì cần phải biết ngoạingữ.Tóm lại : P được gọi là điều kiện cần của Q khi không có P thì không có Q.Có P là cần để có Q.Footer Page 14 of 145.Header Page 15 of 145.12Muốn có Q cần (phải) có P.Chỉ có Q khi có P.2.3.3 Ví Dụ Đối với điều kiện cần và đủ :Ví dụ : Nếu một số có tổng các chữ số chia hết cho 3 thì số đó chia hết cho 3 vàNếu một số chia hết cho 3 thì tổng các chữ số của nó chia hết cho 3.Do đó : Tổng các chữ số chia hết cho 3 là điều kiện cần và đủ để một số chia hếtcho 3. P là điều kiện cần và đủ của Q.Nếu có P thì có Q và nếu có Q thì có P. Có P khi chỉ khi có Q2.4 - Ví Dụ Phán đoán phủ địnhXét phán đoán: Sắt là kim loại.(đúng)Phủ định của phán đoán trên là : Không phải sắt là kim loại ( sai)Xét phán đoán khác: Hà Nội là thành phố của Việt Nam. ( sai)Phủ định của phán đoán trên là:Footer Page 15 of 145.Header Page 16 of 145.13 Không phải Hà Nội là thành phố của Việt Nam.(đúng)Nếu P đúng thì ~P saiNếu P sai thì ~P đúngFooter Page 16 of 145.P~PđssđHeader Page 17 of 145.14PHẦN KẾT LUẬNVậy đoán là hình thức cơ bản của tư duy trừu tượng. Ngoài ra phán đoán cònlà cách thức liên hệ giữa các khái niệm, phản ánh mối liên hệ giữa các sự vật,hiện tượng trong ý thức của con ng ười. Bên cạnh đó phán đoán còn là sựphản ánh những thuộc tính, những mối liên hệ của sự vật, hiện tượng của thếgiới khách quan, sự phản ánh đó có thể hợp hoặc không phù hợp với bản thânthế giới khách quan. Vì thế, mỗi phán đoán có thể là đúng hoặc sai, không cóphán đoán nào không đúng cũng không sai và không có phán đoán vừa đúnglại vừa sai.Footer Page 17 of 145.Header Page 18 of 145.15Tài Liệu Tham khảo[1] A.Giegorshik, Populianaia logica, matscova, 1972[2] Antoine de St Exupery, Chú bé hoàng tử, NXB Ngoại văn, 1987[3]A.Tsêkhôp, Những đàn bà có con chó nhỏ, NXB Ngoại văn, 1983[4] D.P.Gorki, Lô gic học, NXB Giáo dục, 1974[5] E.A.Khơmecô, Lôgic học, NXB Quân đội nhân dân , 1976[6]F.Sinle, Những tên cướp, NXB Văn học, 1983[7] G.Klaus, Moderne Logik, Berlin, 1970[8] HoàngPhê, Logic ngôn ngữ học, NXB Khoa học xã hội , 1989[9] Hoàng Chúng,Mấy vấn đề về lôgic trong bài giảng dạy toán học, NXBGiáo dục, 1962[10] Hoàng Chúng, Lôgic học sơ cấp, ĐHSP tp Hồ Chí Minh, 1985[11] Hoàng Chúng, Đôi điều cần biết về lôgic, Trung tâm Bồi dưỡng Giáo viênvà TTGD, 1990[12] Hồ Chí Minh tuyển tập, NXB Sự Thật, 1980[13] Hecto Malô, Không gia đình , NXBKim Đồng, 1984[14]J.O.Cơc-ut, Ca-dăng, NXB Kim Đồng, 1986Footer Page 18 of 145.Header Page 19 of 145.16[15] Lê Tử Thành, Tìm hiều lôgic học , NXB Trẻ, 1993[16] Nguyễn Đức Dân , Lôgic, ngữ nghĩa, cú pháp , NXP Đại học và THCN ,1987.[17] Nguyễn Văn Trấn, Lôgic vui, NXB Chính trị quốc gia, 1993[18] Nguyễn Văn Trấn, Những bài nói chuyện về lôgic, NXB Sự thật, 1963[19] Nguyễn Vũ Uyên, Đại cương luận lý học hình thức, Lửa Thiêng, 1974[20] Nguyễn Văn Ngọc, Trần Lê Nhân, Cổ học tinh hoa, NXB Trẻ 1992[21]Nguyễn Quốc Túy, Trần Gia Linh, Tục ngữ- Ca dao- Dân ca chọn lọc,NXB Giáo dục , 1993[22] P.C.Novicop, Nhập môn lôgic toán, NXB Đại học THCN, 1970[23] S.L.Edenman, Logic toán, NXB Giáo dục, 1981[24] Tổng tập văn học Việt Nam, tập 30A, NXB Khoa học Xã hội, 1985[25]Truyện cười dân gian Việt Nam, NXB Văn Học, 1985[26] Ts.Aitmatôp, Giamilia, NXB Cầu vồng, 1984[27] W.Segeth, Elementals Logik, Berlin, 1972[28] W.M.Stetek,Jr, Fundamentals of mathmatics, Macmillan , 1989Footer Page 19 of 145.Header Page 20 of 145.Footer Page 20 of 145.17
Tài liệu liên quan
- Tài liệu Luậnvăn: "Nghiên cứu các thành phần hoá học và sự thay đổi của chúng trong nước dưới đất, để từ đó có biện pháp bảo vệ và khai thác một cách hợp lý nguồn tài nguyên này" doc
- 55
- 849
- 0
- Đa dạng sinh học cá và mối quan hệ của chúng với chất lượng nước ở cửa sông ba lạt
- 18
- 464
- 1
- Đa dạng sinh học cá và mối quan hệ của chúng với chất lượng nước sông hồng thuộc địa phận thành phố hưng yên, huyện kim động tỉnh hưng yên
- 17
- 507
- 0
- Nghiên cứu tổng hợp fomazan và bis fomazan, khả năng tạo phức và làm phẩm nhuộm của chúng
- 14
- 551
- 0
- Phân tích đa hình các gen GH, GHR, DGAT1 và mối liên quan của chúng với sản lượng sữa của bò
- 11
- 776
- 1
- Nghiên cứu khoa học " Kết quả điều tra thành phần sâu hại và mức độ hại của chúng trên các khu thử nghiệm xuất xứ keo và bạch đàn tại Đá chông và Cẩm Quỳ (Ba Vì-hà tây) " doc
- 5
- 700
- 3
- đề tài nghiên cứu thử nghiệm các thành phần đất hiếm và sự ảnh hưởng của chúng đến năng suất lúa
- 41
- 382
- 0
- nghiên cứu tổng hợp fomazan và bis-fomazan, khả năng tạo phức và làm phẩm nhuộm của chúng
- 67
- 411
- 0
- Đa dạng sinh học cá và mối quan hệ của chúng với chất lượng nước ở cửa sông Ba Lạt
- 88
- 650
- 0
- Đa dạng sinh học cá và mối quan hệ của chúng với chất lượng môi trường nước ở hồ chứa đồng mô ngải sơn, hà nội
- 78
- 439
- 1
Tài liệu bạn tìm kiếm đã sẵn sàng tải về
(827.38 KB - 20 trang) - Các dạng phán đoán phức và bảng chân lý của chúng Tải bản đầy đủ ngay ×Từ khóa » Công Thức Logic Phán đoán Phức Hợp
-
Logic Hình Thức (Logic Học Đại Cương) - Phán Đoán Phức - YBOX
-
Bài 3: Phán đoán Phức Và Hình Thức Logic Của Phán đoán - Hoc247
-
Phán đoán Phức Hợp - Cộng đồng Học Tập 24h, Học ...
-
[PDF] PHÁN ĐOÁN VÀ CÁC PHÉP LOGIC §1. PHÁN ĐOÁN VÀ PHỦ ...
-
Logic Học Và PPHT, NCKH - Chương 2 - III.Phán đoán Phức- Cô Hạnh
-
Phán đoán Phức Hợp Là Gì? Phân Loại Phán đoán Phức Hợp
-
Logic Chuong3 - SlideShare
-
Bài Tập Phán đoán - Logic Học - Thả Rông
-
[PDF] LOGIC HỌC ĐẠI CƯƠNG - Topica
-
TÍNH ĐẲNG TRỊ CỦA MỘT SỐ PHÁN ĐOÁN PHỨC - Prezi
-
[PDF] Logic Học Khoa Kinh Tế
-
(DOC) Logic Hoc | Hau Le
-
BÀI 3: PHÁN ĐOÁN
-
Logic Học đại Cương- Phán đoán đa Phức Hợp - Bảng Giá Trị Logic