Các Dạng Toán Hình Lớp 9 Hay Có Lời Giải - 123doc
Có thể bạn quan tâm
Nội dung
Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.Chứng minh rằng:1)Tứ giác CEHD, nội tiếp .2)Bốn điểm B,C,E,F cùng nằm trên một đường tròn.3)AE.AC = AH.AD; AD.BC = BE.AC.4)H và M đối xứng nhau qua BC.5)Xác định tâm đường tròn nội tiếp tam giác DEF.Lời giải: 1.Xét tứ giác CEHD ta có: CEH = 900 ( Vì BE là đường cao) CDH = 900 ( Vì AD là đường cao)=> CEH + CDH = 1800 Mà CEH và CDH là hai góc đối của tứ giác CEHD , Do đó CEHD là tứ giác nội tiếp 2.Theo giả thiết: BE là đường cao => BE AC => BEC = 900.CF là đường cao => CF AB => BFC = 900.Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.3.Xét hai tam giác AEH và ADC ta có: AEH = ADC = 900 ; Â là góc chung => AEH ADC => => AE.AC = AH.AD. Xét hai tam giác BEC và ADC ta có: BEC = ADC = 900 ; C là góc chung
Page | 1 Các dạng toán hình lớp 9 hay có lời giải Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P. Chứng minh rằng: 1)Tứ giác CEHD, nội tiếp . 2)Bốn điểm B,C,E,F cùng nằm trên một đường tròn. 3)AE.AC = AH.AD; AD.BC = BE.AC. 4)H và M đối xứng nhau qua BC. 5)Xác định tâm đường tròn nội tiếp tam giác DEF. Lời giải: 1. Xét tứ giác CEHD ta có: ∠ CEH = 90 0 ( Vì BE là đường cao) ∠ CDH = 90 0 ( Vì AD là đường cao) => ∠ CEH + ∠ CDH = 180 0 Mà ∠ CEH và ∠ CDH là hai góc đối của tứ giác CEHD , Do đó CEHD là tứ giác nội tiếp 2. Theo giả thiết: BE là đường cao => BE ⊥ AC => ∠BEC = 90 0 . CF là đường cao => CF ⊥ AB => ∠BFC = 90 0 . Như vậy E và F cùng nhìn BC dưới một góc 90 0 => E và F cùng nằm trên đường tròn đường kính BC. Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn. 3. Xét hai tam giác AEH và ADC ta có: ∠ AEH = ∠ ADC = 90 0 ; Â là góc chung => ∆ AEH ∼ ∆ADC => AC AH AD AE = => AE.AC = AH.AD. 1 Page | 2 Các dạng toán hình lớp 9 hay có lời giải * Xét hai tam giác BEC và ADC ta có: ∠ BEC = ∠ ADC = 90 0 ; ∠C là góc chung => ∆ BEC ∼ ∆ADC => AC BC AD BE = => AD.BC = BE.AC. 4. Ta có ∠C 1 = ∠A 1 ( vì cùng phụ với góc ABC) ∠C 2 = ∠A 1 ( vì là hai góc nội tiếp cùng chắn cung BM) => ∠C 1 = ∠ C 2 => CB là tia phân giác của góc HCM; lại có CB ⊥ HM => ∆ CHM cân tại C => CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC. 5. Theo chứng minh trên bốn điểm B,C,E,F cùng nằm trên một đường tròn => ∠C 1 = ∠E 1 ( vì là hai góc nội tiếp cùng chắn cung BF) Cũng theo chứng minh trên CEHD là tứ giác nội tiếp ∠C 1 = ∠E 2 ( vì là hai góc nội tiếp cùng chắn cung HD) ∠E 1 = ∠E 2 => EB là tia phân giác của góc FED. Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF. Bài 2. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE. 1. Chứng minh tứ giác CEHD nội tiếp . 2. Bốn điểm A, E, D, B cùng nằm trên một đường tròn. 3. Chứng minh ED = 2 1 BC. 4. Chứng minh DE là tiếp tuyến của đường tròn (O). 5. Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm. 2 Page | 3 Các dạng toán hình lớp 9 hay có lời giải Lời giải: 1. Xét tứ giác CEHD ta có: ∠ CEH = 90 0 ( Vì BE là đường cao) ∠ CDH = 90 0 ( Vì AD là đường cao) => ∠ CEH + ∠ CDH = 180 0 Mà ∠ CEH và ∠ CDH là hai góc đối của tứ giác CEHD , Do đó CEHD là tứ giác nội tiếp 2. Theo giả thiết: BE là đường cao => BE ⊥ AC => ∠BEA = 90 0 . AD là đường cao => AD ⊥ BC => ∠BDA = 90 0 . Như vậy E và D cùng nhìn AB dưới một góc 90 0 => E và D cùng nằm trên đường tròn đường kính AB. Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn. 3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến => D là trung điểm của BC. Theo trên ta có ∠BEC = 90 0 . Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 2 1 BC. 3 Page | 4 Các dạng toán hình lớp 9 hay có lời giải 4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => ∠E 1 = ∠A 1 (1). Theo trên DE = 2 1 BC => tam giác DBE cân tại D => ∠E 3 = ∠B 1 (2) Mà ∠B 1 = ∠A 1 ( vì cùng phụ với góc ACB) => ∠E 1 = ∠E 3 => ∠E 1 + ∠E 2 = ∠E 2 + ∠E 3 Mà ∠E 1 + ∠E 2 = ∠BEA = 90 0 => ∠E 2 + ∠E 3 = 90 0 = ∠OED => DE ⊥ OE tại E. Vậy DE là tiếp tuyến của đường tròn (O) tại E. 5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED 2 = OD 2 – OE 2 ED 2 = 5 2 – 3 2 ED = 4cm Bài 3 Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N. 1. Chứng minh AC + BD = CD. 2. Chứng minh ∠COD = 90 0 . 3.Chứng minh AC. BD = 4 2 AB . 4.Chứng minh OC // BM 5.Chứng minh AB là tiếp tuyến của đường tròn đường kính CD. 5.Chứng minh MN ⊥ AB. 6.Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất. Lời giải: 4 Page | 5 Các dạng toán hình lớp 9 hay có lời giải 1. Theo tính chất hai tiếp tuyến cắt nhau ta có: CA = CM; DB = DM => AC + BD = CM + DM. Mà CM + DM = CD => AC + BD = CD 2. Theo tính chất hai tiếp tuyến cắt nhau ta có: OC là tia phân giác của góc AOM; OD là tia phân giác của góc BOM, mà ∠AOM và ∠BOM là hai góc kề bù => ∠COD = 90 0 . 3. Theo trên ∠COD = 90 0 nên tam giác COD vuông tại O có OM ⊥ CD ( OM là tiếp tuyến ). áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có OM 2 = CM. DM, Mà OM = R; CA = CM; DB = DM => AC. BD =R 2 => AC. BD = 4 2 AB . 4. Theo trên ∠COD = 90 0 nên OC ⊥ OD .(1) Theo tính chất hai tiếp tuyến cắt nhau ta có: DB = DM; lại có OM = OB =R => OD là trung trực của BM => BM ⊥ OD .(2). Từ (1) Và (2) => OC // BM ( Vì cùng vuông góc với OD). 5. Gọi I là trung điểm của CD ta có I là tâm đường tròn ngoại tiếp tam giác COD đường kính CD có IO là bán kính. Theo tính chất tiếp tuyến ta có AC ⊥ AB; BD ⊥ AB => AC // BD => tứ giác ACDB là hình thang. Lại có I là trung điểm của CD; O là trung điểm của AB => IO là đường trung bình của hình thang ACDB ⇒ IO // AC , mà AC ⊥ AB => IO ⊥ AB tại O => AB là tiếp tuyến tại O của đường tròn đường kính CD 6. Theo trên AC // BD => BD AC BN CN = , mà CA = CM; DB = DM nên suy ra DM CM BN CN = 5 Page | 6 Các dạng toán hình lớp 9 hay có lời giải => MN // BD mà BD ⊥ AB => MN ⊥ AB. 7. ( HD): Ta có chu vi tứ giác ACDB = AB + AC + CD + BD mà AC + BD = CD nên suy ra chu vi tứ giác ACDB = AB + 2CD mà AB không đổi nên chu vi tứ giác ACDB nhỏ nhất khi CD nhỏ nhất , mà CD nhỏ nhất khi CD là khoảng cách giữ Ax và By tức là CD vuông góc với Ax và By. Khi đó CD // AB => M phải là trung điểm của cung AB. Bài 4 Cho tam giác cân ABC (AB = AC), I là tâm đường tròn nội tiếp, K là tâm đường tròn bàng tiếp góc A , O là trung điểm của IK. 1. Chứng minh B, C, I, K cùng nằm trên một đường tròn. 2. Chứng minh AC là tiếp tuyến của đường tròn (O). 3. Tính bán kính đường tròn (O) Biết AB = AC = 20 Cm, BC = 24 Cm. Lời giải: (HD) 1. Vì I là tâm đường tròn nội tiếp, K là tâm đường tròn bàng tiếp góc A nên BI và BK là hai tia phân giác của hai góc kề bù đỉnh B Do đó BI ⊥ BK hay∠IBK = 90 0 . Tương tự ta cũng có ∠ICK = 90 0 như vậy B và C cùng nằm trên đường tròn đường kính IK do đó B, C, I, K cùng nằm trên một đường tròn. 2. Ta có ∠C 1 = ∠C 2 (1) ( vì CI là phân giác của góc ACH. ∠C 2 + ∠I 1 = 90 0 (2) ( vì ∠IHC = 90 0 ). ∠I 1 = ∠ ICO (3) ( vì tam giác OIC cân tại O) Từ (1), (2) , (3) => ∠C 1 + ∠ICO = 90 0 hay AC ⊥ OC. Vậy AC là tiếp tuyến của đường tròn (O). 6 Page | 7 Các dạng toán hình lớp 9 hay có lời giải 3. Từ giả thiết AB = AC = 20 Cm, BC = 24 Cm => CH = 12 cm. AH 2 = AC 2 – HC 2 => AH = 22 1220 − = 16 ( cm) CH 2 = AH.OH => OH = 16 12 22 = AH CH = 9 (cm) OC = 225129 2222 =+=+ HCOH = 15 (cm) Bài 5 Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì ( M khác A) kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC ⊥ MB, BD ⊥ MA, gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB. 1. Chứng minh tứ giác AMBO nội tiếp. 2. Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn . 3. Chứng minh OI.OM = R 2 ; OI. IM = IA 2 . 4. Chứng minh OAHB là hình thoi. 5. Chứng minh ba điểm O, H, M thẳng hàng. 6. Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d Lời giải: 1. (HS tự làm). 2. Vì K là trung điểm NP nên OK ⊥ NP ( quan hệ đường kính Và dây cung) => ∠OKM = 90 0 . Theo tính chất tiếp tuyến ta có ∠OAM = 90 0 ; ∠OBM = 90 0 . như vậy K, A, B cùng nhìn OM dưới một góc 90 0 nên cùng nằm trên đường tròn đường kính OM. Vậy năm điểm O, K, A, M, B cùng nằm trên một đường tròn. 3. Ta có MA = MB ( t/c hai tiếp tuyến cắt nhau); OA = OB = R 7 Page | 8 Các dạng toán hình lớp 9 hay có lời giải => OM là trung trực của AB => OM ⊥ AB tại I . Theo tính chất tiếp tuyến ta có ∠OAM = 90 0 nên tam giác OAM vuông tại A có AI là đường cao. áp dụng hệ thức giữa cạnh và đường cao => OI.OM = OA 2 hay OI.OM = R 2 ; và OI. IM = IA 2 . 4. Ta có OB ⊥ MB (tính chất tiếp tuyến) ; AC ⊥ MB (gt) => OB // AC hay OB // AH. OA ⊥ MA (tính chất tiếp tuyến) ; BD ⊥ MA (gt) => OA // BD hay OA // BH. => Tứ giác OAHB là hình bình hành; lại có OA = OB (=R) => OAHB là hình thoi. 5. Theo trên OAHB là hình thoi. => OH ⊥ AB; cũng theo trên OM ⊥ AB => O, H, M thẳng hàng( Vì qua O chỉ có một đường thẳng vuông góc với AB). 6. (HD) Theo trên OAHB là hình thoi. => AH = AO = R. Vậy khi M di động trên d thì H cũng di động nhưng luôn cách A cố định một khoảng bằng R. Do đó quỹ tích của điểm H khi M di chuyển trên đường thẳng d là nửa đường tròn tâm A bán kính AH = R Bài 6 Cho tam giác ABC vuông ở A, đường cao AH. Vẽ đường tròn tâm A bán kính AH. Gọi HD là đường kính của đường tròn (A; AH). Tiếp tuyến của đường tròn tại D cắt CA ở E. 1. Chứng minh tam giác BEC cân. 2. Gọi I là hình chiếu của A trên BE, Chứng minh rằng AI = AH. 8 Page | 9 Các dạng toán hình lớp 9 hay có lời giải 3. Chứng minh rằng BE là tiếp tuyến của đường tròn (A; AH). 4. Chứng minh BE = BH + DE. Lời giải: (HD) 1. ∆ AHC = ∆ADE (g.c.g) => ED = HC (1) và AE = AC (2). Vì AB ⊥CE (gt), do đó AB vừa là đường cao vừa là đường trung tuyến của ∆BEC => BEC là tam giác cân. => ∠B 1 = ∠B 2 2. Hai tam giác vuông ABI và ABH có cạnh huyền AB chung, ∠B 1 = ∠B 2 => ∆ AHB = ∆AIB => AI = AH. 3. AI = AH và BE ⊥ AI tại I => BE là tiếp tuyến của (A; AH) tại I. 4. DE = IE và BI = BH => BE = BI+IE = BH + ED Bài 7 Cho đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Ax và lấy trên tiếp tuyến đó một điểm P sao cho AP > R, từ P kẻ tiếp tuyến tiếp xúc với (O) tại M. 1. Chứng minh rằng tứ giác APMO nội tiếp được một đường tròn. 2. Chứng minh BM // OP. 3. Đường thẳng vuông góc với AB ở O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành. 4. Biết AN cắt OP tại K, PM cắt ON tại I; PN và OM kéo dài cắt nhau tại J. Chứng minh I, J, K thẳng hàng. Lời giải: 1. (HS tự làm). 2.Ta có ∠ ABM nội tiếp chắn cung AM; ∠ AOM là góc ở tâm chắn cung AM => ∠ ABM = 2 AOM∠ (1) OP là tia phân giác ∠ AOM ( t/c hai tiếp tuyến cắt nhau ) => ∠ AOP = 2 AOM∠ (2) 9 Page | 10 Các dạng toán hình lớp 9 hay có lời giải Từ (1) và (2) => ∠ ABM = ∠ AOP (3) Mà ∠ ABM và ∠ AOP là hai góc đồng vị nên suy ra BM // OP. (4) 3.Xét hai tam giác AOP và OBN ta có : ∠PAO=90 0 (vì PA là tiếp tuyến ); ∠NOB = 90 0 (gt NO⊥AB). => ∠PAO = ∠NOB = 90 0 ; OA = OB = R; ∠AOP = ∠OBN (theo (3)) => ∆AOP = ∆OBN => OP = BN (5) Từ (4) và (5) => OBNP là hình bình hành ( vì có hai cạnh đối song song và bằng nhau). 4. Tứ giác OBNP là hình bình hành => PN // OB hay PJ // AB, mà ON ⊥ AB => ON ⊥ PJ Ta cũng có PM ⊥ OJ ( PM là tiếp tuyến ), mà ON và PM cắt nhau tại I nên I là trực tâm tam giác POJ. (6) Dễ thấy tứ giác AONP là hình chữ nhật vì có ∠PAO = ∠AON = ∠ONP = 90 0 => K là trung điểm của PO ( t/c đường chéo hình chữ nhật). (6) AONP là hình chữ nhật => ∠APO = ∠ NOP ( so le) (7) Theo t/c hai tiếp tuyến cắt nhau Ta có PO là tia phân giác ∠APM => ∠APO = ∠MPO (8). Từ (7) và (8) => ∆IPO cân tại I có IK là trung tuyến đông thời là đường cao => IK ⊥ PO. (9) 10 [...]... EA 1 Ta có: ∠BNC= 90 0( nội EB với các nửa đường tròn (I), (K) 1.Chứng minh EC = MN tiếp chắn nửa đường tròn tâm 2.Ch/minh MN là tiếp tuyến chung của các nửa K) đ/tròn (I), (K) 3.Tính MN 4.Tính diện tích hình được giới hạn bởi ba nửa đường tròn Lời giải: => ∠ENC = 90 0 (vì là hai góc kề bù) (1) 19 Các dạng toán hình lớp 9 hay có lời giải ∠AMC = 90 0 ( nội tiếp chắn nửc đường tròn tâm I) => ∠EMC = 90 0 (vì... đồng dạng với tam giác EBD giác ABC và Tứ giác ADEC và AFBC nội tiếp EDB Ta có 3 ∠BAC = 90 0 ( 4 AC // FG Các đường thẳng AC, DE, FB đồng quy Lời giải: 23 vì tam giác Các dạng toán hình lớp 9 hay có lời giải ABC vuông tại A); ∠DEB = 90 0 ( góc nội tiếp chắn nửa đường tròn ) Page | 24 là tứ giác nội tiếp => ∠DEB = ∠BAC = 90 0 ; lại có ∠ABC là góc chung => ∆DEB ∼ ∆ CAB 2 Theo trên ∠DEB = 90 0 => ∠DEC = 90 0... định nào Tam giác Lời giải: ONC cân tại O 1 Ta có ∠OMP = 90 0 ( vì PM ⊥ AB ); ∠ONP = 90 0 (vì NP vì có ON = OC là tiếp tuyến ) = R => ∠ONC Như vậy M và N cùng nhìn OP dưới một góc bằng 90 0 => = ∠OCN M và N cùng nằm trên đường tròn đường kính OP => Tứ giác OMNP nội tiếp 16 Các dạng toán hình lớp 9 hay có lời giải Page | 17 => ∠OPM = ∠OCM Xét hai tam giác OMC và MOP ta có ∠MOC = ∠OMP = 90 0; ∠OPM = ∠OCM... ( vì OA và OC là bán kính) => ∠A1 = ∠C4 Mà ∠A1 + ∠M1 = 90 0 ( do tam giác AHM vuông tại H) => ∠C1 + ∠C4 = 90 0 => ∠C3 + ∠C2 = 90 0 ( vì góc ACM là góc bẹt) hay ∠OCK = 90 0 Xét tứ giác KCOH Ta có ∠OHK = 90 0; ∠OCK = 90 0 => ∠OHK + ∠OCK = 1800 mà ∠OHK và ∠OCK là hai góc đối nên KCOH là tứ giác nội tiếp 26 Các dạng toán hình lớp 9 hay có lời giải Bài 19 Cho đường tròn (O) đường kính AC Trên bán kính OC lấy... (O) Chứng minh rằng các đường thẳng BA, EM, CD đồng quy 4 Chứng minh DM là tia phân giác của góc ADE 5 Chứng minh điểm M là tâm đường tròn nội tiếp tam giác ADE Lời giải: 21 Các dạng toán hình lớp 9 hay có lời giải Page | 22 1 Ta có ∠CAB = 90 0 ( vì tam giác ABC vuông tại A); ∠MDC = 90 0 ( góc nội tiếp chắn nửa đường tròn ) => ∠CDB = 90 0 như vậy D và A cùng nhìn BC dưới một góc bằng 90 0 nên A và D cùng... phân giác của góc SCB 22 Các dạng toán hình lớp 9 hay có lời giải 3 Xét ∆CMB Ta có BA⊥CM; CD ⊥ BM; ME ⊥ BC như vậy BA, EM, CD là ba đường cao của tam giác CMB nên BA, EM, CD đồng quy ¼ ¼ 4 Theo trên Ta có SM = EM => ∠D1= ∠D2 => DM là tia phân giác của góc Page | 23 ADE.(1) 5 Ta có ∠MEC = 90 0 (nội tiếp chắn nửa đường tròn (O)) => ∠MEB = 90 0 Tứ giác AMEB có ∠MAB = 90 0 ; ∠MEB = 90 0 => ∠MAB + ∠MEB = 1800... ACB ta có ∠A = 90 0 là góc chung; ∠AFE = ∠ABC ( theo Chứng minh trên) => ∆AEF ∼∆ACB => AE AF = => AE AB = AF AC AC AB * HD cách 2: Tam giác AHB vuông tại H có HE ⊥ AB => AH2 = AE.AB (*) 18 Các dạng toán hình lớp 9 hay có lời giải Tam giác AHC vuông tại H có HF ⊥ AC => AH2 = AF.AC (**) Từ (*) và (**) => AE AB = AF AC 4 Tứ giác AFHE là hình chữ nhật => IE = EH => ∆IEH cân tại I => ∠E1 = ∠H1 Page | 19 ∆O1EH... giác đều ABC có đường cao là AH Trên cạnh BC lấy điểm M bất kì ( M không trùng B C, H ) ; từ M kẻ MP, MQ vuông góc với các cạnh AB AC 1 Chứng minh APMQ là tứ giác nội tiếp và hãy xác định tâm O của đường tròn ngoại tiếp tứ giác đó 2 Chứng minh rằng MP + MQ = AH 3 Chứng minh OH ⊥ PQ Lời giải: 24 Các dạng toán hình lớp 9 hay có lời giải 1 Ta có MP ⊥ AB (gt) => ∠APM = 90 0; MQ Tam giác ACM có MQ là ⊥ AC... đó DE) BDFC nội Chứng minh tương tự ta có ∠DFE < 90 0; ∠EDF < 90 0 Như vậy tiếp được một đường tam giác DEF có ba góc nhọn 2 Ta có AB = AC (gt); AD = AF (theo trên) => AD AF = AB AC => DF // BC 3 DF // BC => BDFC là hình thang lại có ∠ B = ∠C (vì tam giác ABC cân) 15 tròn Các dạng toán hình lớp 9 hay có lời giải Page | 16 4 Xét hai tam giác BDM và CBF Ta có ∠ DBM = ∠BCF ( hai góc đáy của tam giác cân)... ABC => BH ⊥ AC tại F => ∆AEB có ∠AFB = 90 0 Theo trên ∆ADC có ∠ADC = 90 0 => ∠B1 = ∠C1 ( cùng phụ ∠BAC) (5) 34 1 C Các dạng toán hình lớp 9 hay có lời giải Từ (3), (4), (5) =>∠D1 = ∠D2 mà ∠D2 +∠IDH =∠BDC = 90 0=> ∠D1 +∠IDH = 90 0 = ∠IDO => OD ⊥ ID tại D => OD là tiếp tuyến của đường Page | 35 tròn ngoại tiếp tam giác BDE Bài 25 Cho đường tròn (O), BC là dây bất kì (BC< 2R) Kẻ các tiếp tuyến với đường tròn . DH = 2 Cm, AH = 6 Cm. 2 Page | 3 Các dạng toán hình lớp 9 hay có lời giải Lời giải: 1. Xét tứ giác CEHD ta có: ∠ CEH = 90 0 ( Vì BE là đường cao) ∠ CDH = 90 0 ( Vì AD là đường cao) =>. góc kề bù). (1) 19 Page | 20 Các dạng toán hình lớp 9 hay có lời giải ∠AMC = 90 0 ( nội tiếp chắn nửc đường tròn tâm I) => ∠EMC = 90 0 (vì là hai góc kề bù).(2) ∠AEB = 90 0 (nội tiếp. 12 Các dạng toán hình lớp 9 hay có lời giải => ∠ABE =∠MBE ( hai góc nội tiếp chắn hai cung bằng nhau) => BE là tia phân giác góc ABF. (1) Theo trên ta có ∠AEB = 90 0 => BE ⊥ AF hayNgày đăng: 17/10/2014, 14:37
Từ khóa » Các Dạng Toán Hình Lớp 9 Và Cách Giải
-
Các Dạng Toán Hình Lớp 9 Và Cách Giải
-
80 Bài Tập Hình Học Lớp 9 (Có đáp án)
-
Toán Lớp 9 | Các Dạng Bài Tập Toán 9 Cực Hay Có Lời Giải Chi Tiết Ôn ...
-
Tổng Hợp 50 Bài Toán Hình Học Lớp 9 Có Lời Giải Hay Nhất
-
Tổng Hợp Các Bài Toán Hình Ôn Thi Vào Lớp 10 Thường Gặp
-
Phân Dạng Và Bài Tập Hình Học Lớp 9 Các Dạng Toán Hình Lớp 9 Và ...
-
Tuyển Tập 80 Bài Toán Hình Học Lớp 9
-
Các Chuyên De Toán Hình Học Lớp 9
-
Tuyển Chọn Một Số Dạng Toán Hình Học 9 | Tài Liệu Toán 9 Hay
-
Phương Pháp Học Toán Hình Lớp 9 Hiệu Quả - Gia Sư Thăng Long
-
Các Dạng Toán Hình Lớp 9 Và Cách Giải (chuyen-de-toan-9)
-
Các Dạng Toán Chương I Hình Học Lớp 9 - Thư Viện Đề Thi
-
Tổng Hợp Các Dạng Toán Hình Học Lớp 9 VÀ LIST 100 ... - YopoVn.Com
-
Tóm Tắt Lý Thuyết Và Các Dạng Bài Tập Hình Học Lớp 9 15/5/2020