Các Quy Tắc Tính đạo Hàm
Có thể bạn quan tâm
- Trang Chủ
- Đăng ký
- Đăng nhập
- Upload
- Liên hệ

Các quy tắc tính đạo hàm
I. Kiến thức cơ bản
1. Đạo hàm của một số hàm số thường gặp. (Ký hiệu U=U(x))
ngochoa2017
3807
1 Download Bạn đang xem tài liệu "Các quy tắc tính đạo hàm", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trênCác quy tắc tính đạo hàm Kiến thức cơ bản Đạo hàm của một số hàm số thường gặp. (Ký hiệu U=U(x)) =0 (C là hằng số) =1 =n.xn-1 (nN, n2) =n.Un-1. =- (x0) =- = (x>0) = Các quy tắc tính đạo hàm (Ký hiệu U=U(x), V=V(x)). = = = (k là hằng số) = = - Đạo hàm của hàm số hợp: g(x) = f[U(x)]. x = . Kỹ năng cơ bản Vận dụng thành thạo các công thức, quy tắc tính đạo hàm của tổng, hiệu, tích, thương các hàm số. Tính được đạo hàm hàm số hợp. Một số ví dụ A.Ví dụ tự luận VD1. Tính đạo hàm của các hàm số 1/ y=2x5-3x4+x3-x2+1 2/ y=x4-x3+x2+3x-2 3/ y=2x2 (x-3) 4/ y= với m là tham số khác -1 Giải 1/ Ta có: = 10x4-12x3+3x2 –x 2/ Ta có: = 2x3- 4x2+x+3 3/ Ta có: y= 2x3- 6x2 = 6x2-12x 4/ Ta có: y= x+ Do m là tham số khác (-1), nên = VD2. Tính đạo hàm các hàm số 1/ y= 3/ y= 2/ y= 4/ y=(3x-2)(x2+1) Giải: 1/ Ta có: = -= - x-1 2/ Ta có: = = = x-1 3/ Ta có: = = = x 4/ Ta có: = (x2+1) - (3x-2) = 3(x2+1)-(3x-2).2x = 3x2+3- 6x2+4x = -3x2+4x+3 VD3. Tính đạo hàm của các hàm số 1/ y= x 2/ y= (x2-+1) 3/ y= Giải: 1/ Ta có: = .+x = + = 2/ Ta có: = (x2-+1) + = + (2x-) = + 2x- x > 0 3/ Ta có: = = == x <1 VD4. Tính đạo hàm hàm số 1/ y= (2x+3)10 2/ y= (x2+3x-2)20 3/ y= (a là hằng số) Giải: 1/ Ta có: = 10(2x+3)9. = 20(2x+3)9 2/ Ta có: = 20(x2+3x-2)19. = 20(x2+3x-2)19.(2x+3) 3/ Ta có: = = = VD5. Viết phương trình tiếp tuyến của (C ): y=x3-3x+7 1/ Tại điểm A(1;5) 2/ Song song với đường y=6x+1 Giải: Ta có: = 3x2-3 1/ Hệ số góc của tiếp tuyến tại A là k = (1) = 0 Phương trình tiếp tuyến cần viết là: y = 5. 2/ Gọi tiếp điểm là M(x0;y0) y0= x03-3x0+7 Ta có hệ số góc của tiếp tuyến là k = 6 (x0) = 6 3x02-3 = 6 x0 = Với x0 = y0=7. Phương trình tiếp tuyến là: y=6x+7- 6 Với x0 =- y0=7 Phương trình tiếp tuyến là: y=6x+7+6 VD6. Cho hàm số y= Giải bất phương trình khi 0 Giải: Ta có: + = = = x -1 Do đó: 0 0 B. Ví dụ trắc nghiệm Chọn những phương án đúng trong ví dụ sau: VD7. Cho hàm số y= , khi đó bằng A. B. C. D. VD8: Cho hàm số y= , khi đó bằng A. 2 B. C. D. VD9. Cho hàm số y=(x+1)5, khi đó bằng A.-5 B.5 C.-1 D.1 VD10. Cho hàm số y=2x-, khi đó bằng A. B. C. 1 D. Không tồn tại VD11. Cho hàm số y=, khi đó bằng A.0 B.-1 C.- D.- VD12. Cho hàm số y=2x3-3x2+3, khi đó phương trình =0 có nghiệm A. x=0 và x=1 B. x=0 và x=-1 C. x=1 và x=3 D. x=-1 và x=3 VD13. Cho hàm số y=. Đạo hàm bằng A. B. C. D. VD14. Cho hàm số y=, đạo hàm bằng A. B. C. D. VD15. Cho hàm số y=, khi đó tập nghiệm của phương trình >0 là A. S =(-][1;+) C. S =(- B. S =(-)[1;+) D. S = ( VD16. Cho hàm số y=, khi đó bất phương trình có tập nghiệm là: A. S =() B. S =[) C. S =[3;+) D. S Đáp án: VD7 VD8 VD9 VD10 VD11 VD12 VD13 VD14 VD15 VD16 C D A B D A D B C D IV. Bài tập. A. Bài tập tự luận. Bài1. Tính đạo hàm của các hàm số: 1/ y=x3 -2x2+x-+1 7/ y= 2/ y= 8/ y= 3/ y= 9/ y=(x-2) 4/ y= 10/ y= 5/ y= 11/ y= 6/ y= 12/ y= Hướng dẫn: 1/ , 7/ với-3<x<4 2/ 8/ 3/ 9/ 4/ Ta có: y=1-, x 10/ 12/ 5/ 6/ với -3< x <3 Bài 2. Cho hàm số: y= tìm m để 1/ là bình phương của một nhị thức 2/ 3/ <0 (0;1) 4/ >0 >0 Hướng dẫn: Ta có: g(x). 1/ Ta phải có: =0 m= 2/ Ta phải có: 9-2m m 3/ Ta phải có: m<0 4/ Ta phải có: + Hoặc + Hoặc Hệ vô nghiệm Bài 3. Viết phương trình tiếp tuyến của (c ) y=x3-3x2 biết tiếp tuyến vuông góc với đường thẳng y= Hướng dẫn: + Ta có = 3x2-6x + Gọi (x0;y0) là tiếp điểm, y0=x03 -3x02 Ta phải có: 3x02-6x0=-3 x0=1 =>y0=-2 => phương trình tiếp tuyến là: y=-3x+1 Bài 4. Cho đường cong (c)): y=. Tìm toạ độ giao điểm của các tiếp tuyến của (c) với trục ox. Biết tiếp tuyến đó song song với đường thẳng y =-x+1 Hướng dẫn: + Ta có = + Hệ số góc của tiếp tuyến k = -1 + Gọi (x0; y0) là tiếp điểm, y0= Ta phải có: + Ta có 2 tiếp tuyến là y = -x và y = -x+8 + Từ đó suy ra kết quả B. Bài tập trắc nghiệm Chọn phương án đúng trong các bài tập sau: Bài 4. Cho hàm số y =, bằng A. B. C. 1 D. - 1 Bài 5. Cho biết hàm số y = , bằng A. B. C. D. Bài 6. Cho hàm số y =, bằng A. B. - C. D. - Bài 7. Cho hàm số y =(1-3x)6, bằng A. 1 B. -1 C. 18 D. - 18 Bài 8. Cho hàm số y = , Khi đó tập nghiệm của bất phương trình là: A. S =IR B. S =[0; C. S =(0; D. S = Bài 9. Cho hàm số f(x)= x2+3x-1 và g(x) = 2x-3. Bất phương trình có tập nghiệm là: A. S = B. S = C. S = D. –S = Bài 10. Hàm số y= có A. B. C. D. Bài 11. Hàm số y = có A. B. C. D. Bài 12. Hàm số y = x3+2x2-mx+1 có IR, khi đó tập các giá trị của m là: A. T= B. T= () C. T = ( D. T= () Bài 13. Hàm số y = có Khi đó tập các giá trị của m là: A. T= B. T= () C. T = ( D. T= ( Bài 14. Hàm số y = (2x+3)10 có A. B. C. D. Bài 15. Hàm số y = có A. B. C. D. Đáp án: B4. B B5. A B6. C B7. D B8. B B9. C B10. A B11. D B12. B B13. A B14. C B15. B Tài liệu đính kèm:
Chuyen de Cac quy tac tinh dao ham.doc
Đề tham khảo thi tốt nghiệp thpt môn : Toán – năm học: 2009 - 2010
Lượt xem: 1199
Lượt tải: 0
Chuyên đề: Một số phương pháp giải phương trình vô tỉ
Lượt xem: 1216
Lượt tải: 1
Chủ đề: Số phức - Giáo viên biên soạn: Võ Duy Minh
Lượt xem: 1539
Lượt tải: 0
Một số đề thi thử tốt nghiệp môn Toán lớp 12
Lượt xem: 1857
Lượt tải: 0
Kỳ thi tốt nghiệp trung học phổ thông năm 2006 Môn thi: Toán - Trung học phổ thông phân ban
Lượt xem: 1160
Lượt tải: 0
Giáo án Ôn tập tốt nghiệp môn Toán tiết 18: Số phức
Lượt xem: 1113
Lượt tải: 0
Tham khảo ôn thi tốt nghiệp năm 2010
Lượt xem: 1151
Lượt tải: 0
Kỳ thi tốt nghiệp thpt năm 2010 môn: Toán – Giáo dục thpt
Lượt xem: 1048
Lượt tải: 0
Đề thi thử tốt nghiệp thpt phân ban môn thi : Toán khối 12
Lượt xem: 1069
Lượt tải: 0
Đề thi chọn học sinh giỏi cấp tỉnh Lạng Sơn lớp 12 năm học 2011 - 2012 môn thi: Toán lớp 12 thpt
Lượt xem: 1848
Lượt tải: 1
Copyright © 2026 Lop12.net - Giáo án điện tử lớp 12, Sáng kiến kinh nghiệm hay, chia sẻ thủ thuật phần mềm
Từ khóa » đạo Hàm Của 3x-1/x-3
-
Tìm Đạo Hàm - D/d@VAR F(x)=x^3-3x+1 | Mathway
-
Cho Hàm Số Y=(3x-1)/(x-3). Gọi Giá Trị Lớn Nhất, Giá Trị Nhỏ Nhất
-
Tính đạo Hàm đến Cấp đã Chỉ Ra Của Hàm Số Sau: Y= 3x-1 / X + 2 , (y (4))
-
[LỜI GIẢI] Tính đạo Hàm Của Hàm Số Y = 3^x + 1. - Tự Học 365
-
Tính đạo Hàm Của Hàm Số: F(x) = X^3 - 3x + 1 - Toán Học Lớp 11 - Lazi
-
Tính đạo Hàm Của Hàm Số Y = 3^x + 1 - Khóa Học
-
Tìm đạo Hàm Của Hs Y= X+1/x^3 - Naru To
-
Tính đạo Hàm Của Hàm Số Y=x^3+x Tại X = 1...
-
Y = 3x-1 | Xem Lời Giải Tại QANDA
-
Tính đạo Hàm Của Hàm Số Sau Y = 3/x^2- Cănx... - Vietjack.online
-
Đạo Hàm Của Hàm Số (y = (1)(((x^3))) - (1)(((x^2))) ) Là
-
Top 14 Cho F(x^2+3x+1)=x+2