Các Quy Tắc Tính đạo Hàm
Có thể bạn quan tâm
- Trang Chủ
- Đăng ký
- Đăng nhập
- Upload
- Liên hệ

Các quy tắc tính đạo hàm
I. Kiến thức cơ bản
1. Đạo hàm của một số hàm số thường gặp. (Ký hiệu U=U(x))
ngochoa2017
3792
1 Download Bạn đang xem tài liệu "Các quy tắc tính đạo hàm", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trênCác quy tắc tính đạo hàm Kiến thức cơ bản Đạo hàm của một số hàm số thường gặp. (Ký hiệu U=U(x)) =0 (C là hằng số) =1 =n.xn-1 (nN, n2) =n.Un-1. =- (x0) =- = (x>0) = Các quy tắc tính đạo hàm (Ký hiệu U=U(x), V=V(x)). = = = (k là hằng số) = = - Đạo hàm của hàm số hợp: g(x) = f[U(x)]. x = . Kỹ năng cơ bản Vận dụng thành thạo các công thức, quy tắc tính đạo hàm của tổng, hiệu, tích, thương các hàm số. Tính được đạo hàm hàm số hợp. Một số ví dụ A.Ví dụ tự luận VD1. Tính đạo hàm của các hàm số 1/ y=2x5-3x4+x3-x2+1 2/ y=x4-x3+x2+3x-2 3/ y=2x2 (x-3) 4/ y= với m là tham số khác -1 Giải 1/ Ta có: = 10x4-12x3+3x2 –x 2/ Ta có: = 2x3- 4x2+x+3 3/ Ta có: y= 2x3- 6x2 = 6x2-12x 4/ Ta có: y= x+ Do m là tham số khác (-1), nên = VD2. Tính đạo hàm các hàm số 1/ y= 3/ y= 2/ y= 4/ y=(3x-2)(x2+1) Giải: 1/ Ta có: = -= - x-1 2/ Ta có: = = = x-1 3/ Ta có: = = = x 4/ Ta có: = (x2+1) - (3x-2) = 3(x2+1)-(3x-2).2x = 3x2+3- 6x2+4x = -3x2+4x+3 VD3. Tính đạo hàm của các hàm số 1/ y= x 2/ y= (x2-+1) 3/ y= Giải: 1/ Ta có: = .+x = + = 2/ Ta có: = (x2-+1) + = + (2x-) = + 2x- x > 0 3/ Ta có: = = == x <1 VD4. Tính đạo hàm hàm số 1/ y= (2x+3)10 2/ y= (x2+3x-2)20 3/ y= (a là hằng số) Giải: 1/ Ta có: = 10(2x+3)9. = 20(2x+3)9 2/ Ta có: = 20(x2+3x-2)19. = 20(x2+3x-2)19.(2x+3) 3/ Ta có: = = = VD5. Viết phương trình tiếp tuyến của (C ): y=x3-3x+7 1/ Tại điểm A(1;5) 2/ Song song với đường y=6x+1 Giải: Ta có: = 3x2-3 1/ Hệ số góc của tiếp tuyến tại A là k = (1) = 0 Phương trình tiếp tuyến cần viết là: y = 5. 2/ Gọi tiếp điểm là M(x0;y0) y0= x03-3x0+7 Ta có hệ số góc của tiếp tuyến là k = 6 (x0) = 6 3x02-3 = 6 x0 = Với x0 = y0=7. Phương trình tiếp tuyến là: y=6x+7- 6 Với x0 =- y0=7 Phương trình tiếp tuyến là: y=6x+7+6 VD6. Cho hàm số y= Giải bất phương trình khi 0 Giải: Ta có: + = = = x -1 Do đó: 0 0 B. Ví dụ trắc nghiệm Chọn những phương án đúng trong ví dụ sau: VD7. Cho hàm số y= , khi đó bằng A. B. C. D. VD8: Cho hàm số y= , khi đó bằng A. 2 B. C. D. VD9. Cho hàm số y=(x+1)5, khi đó bằng A.-5 B.5 C.-1 D.1 VD10. Cho hàm số y=2x-, khi đó bằng A. B. C. 1 D. Không tồn tại VD11. Cho hàm số y=, khi đó bằng A.0 B.-1 C.- D.- VD12. Cho hàm số y=2x3-3x2+3, khi đó phương trình =0 có nghiệm A. x=0 và x=1 B. x=0 và x=-1 C. x=1 và x=3 D. x=-1 và x=3 VD13. Cho hàm số y=. Đạo hàm bằng A. B. C. D. VD14. Cho hàm số y=, đạo hàm bằng A. B. C. D. VD15. Cho hàm số y=, khi đó tập nghiệm của phương trình >0 là A. S =(-][1;+) C. S =(- B. S =(-)[1;+) D. S = ( VD16. Cho hàm số y=, khi đó bất phương trình có tập nghiệm là: A. S =() B. S =[) C. S =[3;+) D. S Đáp án: VD7 VD8 VD9 VD10 VD11 VD12 VD13 VD14 VD15 VD16 C D A B D A D B C D IV. Bài tập. A. Bài tập tự luận. Bài1. Tính đạo hàm của các hàm số: 1/ y=x3 -2x2+x-+1 7/ y= 2/ y= 8/ y= 3/ y= 9/ y=(x-2) 4/ y= 10/ y= 5/ y= 11/ y= 6/ y= 12/ y= Hướng dẫn: 1/ , 7/ với-3<x<4 2/ 8/ 3/ 9/ 4/ Ta có: y=1-, x 10/ 12/ 5/ 6/ với -3< x <3 Bài 2. Cho hàm số: y= tìm m để 1/ là bình phương của một nhị thức 2/ 3/ <0 (0;1) 4/ >0 >0 Hướng dẫn: Ta có: g(x). 1/ Ta phải có: =0 m= 2/ Ta phải có: 9-2m m 3/ Ta phải có: m<0 4/ Ta phải có: + Hoặc + Hoặc Hệ vô nghiệm Bài 3. Viết phương trình tiếp tuyến của (c ) y=x3-3x2 biết tiếp tuyến vuông góc với đường thẳng y= Hướng dẫn: + Ta có = 3x2-6x + Gọi (x0;y0) là tiếp điểm, y0=x03 -3x02 Ta phải có: 3x02-6x0=-3 x0=1 =>y0=-2 => phương trình tiếp tuyến là: y=-3x+1 Bài 4. Cho đường cong (c)): y=. Tìm toạ độ giao điểm của các tiếp tuyến của (c) với trục ox. Biết tiếp tuyến đó song song với đường thẳng y =-x+1 Hướng dẫn: + Ta có = + Hệ số góc của tiếp tuyến k = -1 + Gọi (x0; y0) là tiếp điểm, y0= Ta phải có: + Ta có 2 tiếp tuyến là y = -x và y = -x+8 + Từ đó suy ra kết quả B. Bài tập trắc nghiệm Chọn phương án đúng trong các bài tập sau: Bài 4. Cho hàm số y =, bằng A. B. C. 1 D. - 1 Bài 5. Cho biết hàm số y = , bằng A. B. C. D. Bài 6. Cho hàm số y =, bằng A. B. - C. D. - Bài 7. Cho hàm số y =(1-3x)6, bằng A. 1 B. -1 C. 18 D. - 18 Bài 8. Cho hàm số y = , Khi đó tập nghiệm của bất phương trình là: A. S =IR B. S =[0; C. S =(0; D. S = Bài 9. Cho hàm số f(x)= x2+3x-1 và g(x) = 2x-3. Bất phương trình có tập nghiệm là: A. S = B. S = C. S = D. –S = Bài 10. Hàm số y= có A. B. C. D. Bài 11. Hàm số y = có A. B. C. D. Bài 12. Hàm số y = x3+2x2-mx+1 có IR, khi đó tập các giá trị của m là: A. T= B. T= () C. T = ( D. T= () Bài 13. Hàm số y = có Khi đó tập các giá trị của m là: A. T= B. T= () C. T = ( D. T= ( Bài 14. Hàm số y = (2x+3)10 có A. B. C. D. Bài 15. Hàm số y = có A. B. C. D. Đáp án: B4. B B5. A B6. C B7. D B8. B B9. C B10. A B11. D B12. B B13. A B14. C B15. B Tài liệu đính kèm:
Chuyen de Cac quy tac tinh dao ham.doc
Bộ đề thi thử Đại học môn Toán - Đề số 4
Lượt xem: 1773
Lượt tải: 0
Đề cương ôn tập học kỳ I - Môn Toán 12
Lượt xem: 1219
Lượt tải: 0
Đề kiểm tra học kỳ I năm học : 2008 - 2009 môn : Toán lớp : 12
Lượt xem: 1005
Lượt tải: 0
Đề Ôn thi tốt nghiệp thpt môn Toán. Năm học : 2008 - 2009
Lượt xem: 874
Lượt tải: 0
Giáo án Giải tích 12 NC tiết 76, 77: Dạng lượng giác của số phức & ứng dụng
Lượt xem: 1331
Lượt tải: 0
Giáo án Giải tích 12 tiết 35 đến 43
Lượt xem: 1441
Lượt tải: 0
Đề tài Giải và biện luận các phương trình và bất phương trình bậc hai chứa tham số
Lượt xem: 2257
Lượt tải: 0
Tổng hợp kiến thức Toán Lớp 12 - Bài 5: Tiếp tuyến
Lượt xem: 920
Lượt tải: 0
Bất đẳng thức Schur và phương pháp đổi biến p,q,r
Lượt xem: 2932
Lượt tải: 0
Giáo án Giải tích 12 CB: Phép chia số phức
Lượt xem: 2669
Lượt tải: 1
Copyright © 2026 Lop12.net - Giáo án điện tử lớp 12, Sáng kiến kinh nghiệm hay, chia sẻ thủ thuật phần mềm
Từ khóa » đạo Hàm Của 3x^2
-
Tìm Đạo Hàm - D/dx Y=3x^2 - Mathway
-
Tìm Đạo Hàm - D/dx Căn Bậc Hai Của 3x-2 | Mathway
-
[LỜI GIẢI] Tính đạo Hàm Của Hàm Số Y = 3^x^2 - Tự Học 365
-
Đạo Hàm Của Hàm Số F( X ) = ( 3x^2 - 1 )^2 Tại X = 1 Là - Tự Học 365
-
Tính đạo Hàm Của Hàm Số Y= 3x-2/ Căn 2x + 5 Câu Hỏi 766528
-
Tính đạo Hàm Của Hàm Số Sau Y = 3/x^2- Cănx... - Vietjack.online
-
Tính đạo Hàm Của Hàm Số Sau Y = 3/x^2- Cănx
-
Đạo Hàm Của Hàm Số (y = ((2x - 3))((3x - 2)) ) Là
-
Tìm đạo Hàm Của Các Hàm Số Sau Y = 3x5 8 - 3x2
-
Đạo Hàm Của Hàm Số: Y = (3x-2)/(2x+5) Bằng Biểu Thức
-
Tính đạo Hàm Của Hàm Số Sau: Y=x^4-3x^2+2x-1...
-
Tìm đạo Hàm Của Hàm Số Y=3x2−2x | Cungthi.online
-
Tính đạo Hàm Của Hàm Số Sau Y = (x 2 + 3x)(2 – X).