Cách để Sử Dụng Định Lý Pytago - WikiHow
Có thể bạn quan tâm
- Đăng nhập / Đăng ký
Bài viết này đã được cùng viết bởi Grace Imson, MA. Grace Imson là giáo viên toán với hơn 40 năm kinh nghiệm giảng dạy. Grace hiện tại là giáo viên dạy toán của Đại học Thành phố San Francisco và trước đây làm việc ở khoa toán của Đại học Saint Louis. Bà đã dạy toán ở cấp tiểu học, trung học cơ sở, trung học phổ thông và đại học. Bà có bằng thạc sĩ về giáo dục của Đại học Saint Louis, chuyên ngành quản lý và giám sát trong giáo dục. Bài viết này đã được xem 257.812 lần.
Trong bài viết này: Tìm các cạnh của tam giác vuông Tính Khoảng cách giữa hai điểm trong mặt phẳng X-Y Bài viết có liên quanĐịnh lý Pytago (Pythagore) là một định lý toán học được sử dụng rất rộng rãi và có nhiều ứng dụng thực tiễn. Định lý nêu rằng trong bất kỳ tam giác vuông nào, tổng bình phương hai cạnh góc vuông bằng bình phương cạnh huyền. Nói cách khác, trong một tam giác vuông với các cạnh góc vuông có chiều dài là a và b và độ dài cạnh huyền là c, thì ta luôn có a2 + b2 = c2. Định lý Pytago là một trong những trụ cột chính của hình học cơ bản. Có vô vàn ứng dụng thực tiễn như tìm khoảng cách giữa hai điểm trên một mặt phẳng tọa độ.
Các bước
Phương pháp 1 Phương pháp 1 của 2:Tìm các cạnh của tam giác vuông
Tải về bản PDF-
- Như một dấu hiệu trực quan, góc vuông thường được đánh dấu bằng một hình vuông nhỏ, mà không phải là một "đường cong" vòng tròn. Hãy tìm dấu đặc biệt này ở góc của tam giác.
1 Hãy chắc chắn rằng tam giác của bạn là một tam giác vuông. Định lý Pytago chỉ áp dụng cho các tam giác vuông. Vì vậy, trước khi tiến hành, cần chắc chắn rằng tam giác của bạn đáp ứng đủ tiêu chí của một tam giác vuông. May mắn thay, chỉ có một tiêu chí duy nhất - để là một tam giác vuông, tam giác đó phải có một góc bằng 90 độ. - 2 Gọi các cạnh tam giác là a, b, và c. Trong Định lý Pytago, a và b là các cạnh góc vuông, c là cạnh huyền – cạnh dài nhất luôn luôn đối diện với góc vuông. Vì vậy, để bắt đầu, gọi các cạnh ngắn hơn của tam giác là a và b (không quan trọng cạnh nào là 'a' hoặc 'b'), và gọi cạnh huyền là c.
-
- Ví dụ, giả sử chúng ta biết cạnh huyền có chiều dài là 5 và một trong các cạnh bên có chiều dài là 3, nhưng chúng ta không biết độ dài của cạnh thứ ba là bao nhiêu. Trong trường hợp này, chúng ta sẽ giải bài toán tìm cạnh thứ ba, vì đã biết độ dài của hai cạnh còn lại. Chúng ta sẽ sử dụng ví dụ này ở các bước tiếp theo.
- Nếu độ dài hai cạnh là chưa biết, bạn sẽ cần phải xác định độ dài của một cạnh nữa để sử dụng Định lý Pythagore. Các hàm lượng giác cơ bản có thể giúp bạn nếu bạn biết số đo một trong những góc nhọn của tam giác.
3 Xác định bạn cần tìm cạnh nào của tam giác. Định lý Pytago cho phép các nhà toán học tìm độ dài của bất kỳ một cạnh nào của tam giác vuông miễn là họ biết chiều dài hai cạnh còn lại. Xác định cạnh có chiều dài chưa biết - a, b, và/hoặc c. Nếu chỉ có duy nhất một cạnh là chưa biết, bạn có thể bắt đầu. -
- Trong ví dụ trên, chúng ta biết độ dài một cạnh và cạnh huyền (là 3 và 5), do đó phương trình sẽ là 3² + b² = 5²
4 Thay hai giá trị đã biết vào phương trình. Thay giá trị độ dài các cạnh của tam giác vào phương trình a2 + b2 = c2. Nhớ rằng a và b là hai cạnh góc vuông, c là cạnh huyền. -
- Trong ví dụ này, chúng ta sẽ bình phương 3 và 5 để được 9 và 25. Phương trình có thể được viết lại là 9 + b² = 25.
5 Tính bình phương. Để giải phương trình, hãy bắt đầu bằng cách lấy bình phương của mỗi cạnh đã biết. Ngoài ra, nếu bạn thấy dễ hơn, bạn có thể để độ dài các cạnh dưới dạng số mũ, sau đó bình phương chúng sau. -
- Trong ví dụ này, phương trình hiện tại là 9 + b² = 25. Để tách b², hãy trừ cả hai vế phương trình cho 9. Phương trình có được là b² = 16.
6 Tách biến chưa biết sang một vế của phương trình. Nếu cần thiết, sử dụng phép đại số cơ bản để đưa biến chưa biết sang một bên phương trình và hai số bình phương sang một bên của phương trình. Nếu bạn tìm cạnh huyền, c đã ở một vế riêng, vì vậy bạn không cần phải làm bất cứ điều gì để tách nó. -
- Trong ví dụ này, b² = 16, lấy căn bậc hai của cả hai vế ta được b = 4. Như vậy, chiều dài của cạnh cần tìm là 4.
7 Lấy căn bậc hai của cả hai vế phương trình. Bây giờ bạn sẽ còn lại một biến bình phương ở một vế của phương trình và một số ở vế kia. Đơn giản chỉ cần lấy căn bậc hai của cả hai vế để tìm độ dài cạnh chưa biết. -
- Lấy một ví dụ trong thực tế. Một chiếc thang đang đứng dựa vào tòa nhà. Đáy thang cách chân tường 5m. Thang cao tới 20m của tòa nhà. Hỏi thang dài bao nhiêu m?
- Đáy thang cách chân tường 5 m và cao 20 m của bức tường tòa nhà cho chúng ta biết chiều dài hai cạnh của tam giác. Vì bức tường và mặt đất giao nhau tại một góc vuông và chiếc thang dựng vào bước tường theo đường chéo, chúng ta có thể hình dung nó như một tam giác vuông với chiều dài cạnh a = 5 và b = 20. Chiếc thang là cạnh huyền, vậy c chưa biết. Hãy sử dụng Định lý Pytago:
- a² + b² = c²
- (5)² + (20)² = c²
- 25 + 400 = c²
- 425 = c²
- Căn bậc hai của (425) = c
- c = 20,6. Chiều dài chiếc thang xấp xỉ là 20,6 m.
- Đáy thang cách chân tường 5 m và cao 20 m của bức tường tòa nhà cho chúng ta biết chiều dài hai cạnh của tam giác. Vì bức tường và mặt đất giao nhau tại một góc vuông và chiếc thang dựng vào bước tường theo đường chéo, chúng ta có thể hình dung nó như một tam giác vuông với chiều dài cạnh a = 5 và b = 20. Chiếc thang là cạnh huyền, vậy c chưa biết. Hãy sử dụng Định lý Pytago:
8 Sử dụng Định lý Pytago để tìm cạnh của tam giác vuông trong thực tế. Lý do mà Định lý này được sử dụng rộng rãi ngày nay là nó được áp dụng trong vô số các tình huống thực tế. Học cách nhận biết tam giác vuông trong đời sống - bất cứ trường hợp nào mà hai vật hoặc hai đường thẳng giao nhau tại một góc vuông và vật hoặc đường thẳng thứ ba cắt chéo qua góc vuông đó thì bạn đều có thể sử dụng Định lý Pytago để tìm độ dài của một trong các cạnh khi biết chiều dài của hai cạnh còn lại. - Lấy một ví dụ trong thực tế. Một chiếc thang đang đứng dựa vào tòa nhà. Đáy thang cách chân tường 5m. Thang cao tới 20m của tòa nhà. Hỏi thang dài bao nhiêu m?
Tính Khoảng cách giữa hai điểm trong mặt phẳng X-Y
Tải về bản PDF-
- Để tìm khoảng cách giữa hai điểm này, chúng ta sẽ coi mỗi điểm là một trong những góc nhọn của tam giác vuông. Bằng cách này, thật dễ để tìm ra chiều dài cạnh a và b, sau đó tính cạnh c hay chính là khoảng cách giữa hai điểm.
1 Xác định hai điểm trong mặt phẳng X-Y. Định lý Pytago có thể dễ dàng được sử dụng để tính khoảng cách đường thẳng giữa hai điểm trong mặt phẳng X-Y. Tất cả thông tin bạn cần biết là tọa độ x và y của hai điểm bất kỳ. Thông thường, những tọa độ này được viết theo cặp thứ tự tọa độ là (x, y). - 2 Vẽ hai điểm trên đồ thị. Trong mặt phẳng X-Y thông thường, với mỗi điểm (x, y), x là tọa độ trên trục hoành và y là tọa độ trên trục tung. Bạn có thể tìm khoảng cách giữa hai điểm mà không cần vẽ chúng trên đồ thị, nhưng vẽ đồ thị sẽ giúp bạn nhìn rõ hơn.
-
- Giả sử hai điểm là (6,1) and (3,5). Chiều dài cạnh nằm ngang của tam giác là:
- |x1 - x2|
- |3 - 6|
- | -3 | = 3
- Chiều dài cạnh thẳng đứng là:
- |y1 - y2|
- |1 - 5|
- | -4 | = 4
- Vậy, chúng ta có thể nói rằng trong tam giác vuông này, cạnh a = 3 và cạnh b = 4.
3 Tìm chiều dài các cạnh góc vuông của tam giác. Sử dụng hai điểm đã cho như các góc của tam giác liền kề với cạnh huyền, tìm độ dài cạnh a và b của tam giác. Bạn có thể làm điều này một cách trực quan trên đồ thị, hoặc bằng cách sử dụng công thức |x1 - x2| cho cạnh nằm ngang và |y1 - y2| cho cạnh thẳng đứng, trong đó (x1,y1) là điểm đầu tiên và (x2,y2) là điểm thứ hai. - Giả sử hai điểm là (6,1) and (3,5). Chiều dài cạnh nằm ngang của tam giác là:
-
- Trong ví dụ với các điểm là (3,5) và (6,1), chiều dài các cạnh góc vuông là 3 và 4, do đó chúng ta tính chiều dài cạnh huyền như sau:
- (3)²+(4)²= c² c= căn bậc hai của (9+16) c= căn bậc hai của (25) c= 5. Khoảng cách giữa hai điểm (3,5) và (6,1) là 5.
4 Sử dụng Định lý Pytago để giải phương trình tìm cạnh huyền. Khoảng cách giữa hai điểm đã cho là cạnh huyền của tam giác có hai cạnh góc vuông như chúng ta vừa xác định. Sử dụng Định lý Pytago như thông thường để tìm cạnh huyền, đặt a là chiều dài cạnh thứ nhất và b là chiều dài cạnh thứ hai. - Trong ví dụ với các điểm là (3,5) và (6,1), chiều dài các cạnh góc vuông là 3 và 4, do đó chúng ta tính chiều dài cạnh huyền như sau:
Lời khuyên
- Cạnh huyền luôn luôn:
- cắt ngang qua góc vuông (không đi qua góc vuông)
- là cạnh dài nhất của tam giác vuông
- được đại diện bởi c trong định lý Pytago
- Luôn luôn kiểm tra lại kết quả.
- Một cách kiểm tra khác – cạnh dài nhất sẽ đối diện với góc lớn nhất và cạnh ngắn nhất sẽ đối diện với góc nhỏ nhất.
- Trong tam giác vuông, bạn chỉ biết được cạnh thứ ba khi biết độ dài hai cạnh còn lại.
- Nếu tam giác không phải là tam giác vuông, bạn sẽ cần phải có thêm thông tin ngoài chiều dài hai cạnh.
- Để gán các giá trị chính xác cho a, b, và c bạn nên biểu diễn tam giác dưới dạng hình vẽ, đặc biệt đối với những bài toán logic hay toán từ.
- Nếu bạn chỉ có số đo một cạnh, bạn không thể sử dụng Định lý Pytago. Thay vào đó hãy sử dụng các hàm lượng giác (sin, cos, tan) hoặc tỉ lệ 30-60-90 / 45-45-90.
Bài viết wikiHow có liên quan
Cách đểLàm tròn Số Cách đểLàm tròn đến chữ số phần mười gần nhất Cách đểTính Diện tích Hình Lục giác Cách đểĐổi từ Số Thập phân sang Nhị phân Cách đểTìm định thức ma trận 3x3 Cách đểTính Bậc của Đa thức Cách đểTính số đo góc Cách đểTìm nghịch đảo của ma trận 3x3 Cách đểChia phân số cho phân số Cách đểTìm chiều dài cạnh huyền Cách đểQuy đổi từ mililit sang gam Cách đểTính Thể tích của Hình lăng trụ Tam giác Quảng cáoVề bài wikiHow này
Cùng viết bởi: Grace Imson, MA Giáo viên dạy toán Bài viết này đã được cùng viết bởi Grace Imson, MA. Grace Imson là giáo viên toán với hơn 40 năm kinh nghiệm giảng dạy. Grace hiện tại là giáo viên dạy toán của Đại học Thành phố San Francisco và trước đây làm việc ở khoa toán của Đại học Saint Louis. Bà đã dạy toán ở cấp tiểu học, trung học cơ sở, trung học phổ thông và đại học. Bà có bằng thạc sĩ về giáo dục của Đại học Saint Louis, chuyên ngành quản lý và giám sát trong giáo dục. Bài viết này đã được xem 257.812 lần. Chuyên mục: Toán học Ngôn ngữ khác Tiếng Anh Tiếng Tây Ban Nha Tiếng Italy Tiếng Pháp Tiếng Nga Tiếng Trung Tiếng Hà Lan Tiếng Indonesia Tiếng Hindi Tiếng Séc Tiếng Thái Tiếng Hàn- In
Bài viết này đã giúp ích cho bạn?
Có Không Quảng cáo Cookie cho phép wikiHow hoạt động tốt hơn. Bằng việc tiếp tục sử dụng trang web của chúng tôi, bạn đồng ý với chính sách cookie của chúng tôi.Bài viết có liên quan
Cách đểLàm tròn SốCách đểLàm tròn đến chữ số phần mười gần nhấtCách đểTính Diện tích Hình Lục giácCách đểĐổi từ Số Thập phân sang Nhị phânCác bài viết hướng dẫn nổi bật
Xem Instagram riêng tư của người khác mà không cần theo dõi: sự thực và 3 cách thay thếXem đường chỉ tay hôn nhân: độ dài, độ cong và các đặc điểm riêng biệt17 dấu hiệu cho biết chàng thầm yêu bạnXem ai không theo dõi lại bạn trên InstagramCác bài viết hướng dẫn phổ biến
Cách đểLấy Mật khẩu Facebook của Người khácCách đểThổi bong bóng bằng kẹo cao suCách đểCăn giữa văn bản trên Microsoft WordCách đểGấp hộp giấyCách đểChuyển đổi màn hình 1 và 2 trên PCCách đểChép tài liệu từ máy tính sang USBCác bài viết hướng dẫn nổi bật
15 dấu hiệu kín đáo cho thấy nàng bị bạn thu hútBiết ai đã chia sẻ bài đăng trên Instagram của bạn lên Story của họ3 cách đơn giản giúp bạn đăng nhập Instagram không cần mã xác minhChọn thuê người yêu đóng thế: 8 lời khuyên dành cho bạnCác bài viết hướng dẫn nổi bật
Phải làm gì khi con gái không trả lời tin nhắn của bạn: 13 kiểu tin nhắn mà bạn có thể gửi cho cô ấyPhản hồi khi người yêu nhắn tin nói rằng họ nhớ bạn15 dấu hiệu tiết lộ người cũ sẽ quay lại với bạn175 câu bắt chuyện thú vị và hấp dẫn để tiêu khiển với bạn bèCác bài viết hướng dẫn nổi bật
Xem video đã xóa trên YouTube bằng WayBack Machine9 cách đơn giản giúp bạn nhận biết người có nhiều tài khoản InstagramKể về bản thân trên ứng dụng hẹn hò5 cách để tìm một người trên TinderCác bài viết hướng dẫn nổi bật
5 cách dễ dàng để biết ai đó đã chặn bạn trên DiscordTại sao một anh chàng cứ nhìn bạn chằm chằm? 11 lý do và cách phản hồi11 cách dễ dàng để khen vẻ ngoài của một chàng trai70+ câu trả lời thú vị, ngọt ngào và lãng mạn khi người yêu hỏi bạn yêu họ nhiều như thế nào- Chuyên mục
- Giáo dục và Truyền thông
- Khoa học và Công nghệ
- Toán học
- Trang chủ
- Giới thiệu về wikiHow
- Các chuyên gia
- Liên hệ với chúng tôi
- Sơ đồ Trang web
- Điều khoản Sử dụng
- Chính sách về Quyền riêng tư
- Do Not Sell or Share My Info
- Not Selling Info
Theo dõi chúng tôi
--497Từ khóa » Tìm Hiểu Về Py Ta Go
-
Pythagoras – Wikipedia Tiếng Việt
-
Định Lý Pythagoras – Wikipedia Tiếng Việt
-
Tiểu Sử Nhà Toán Học Vĩ đại Pytago - Trường Quốc Học
-
Tiểu Sử Nhà Toán Học Pythagoras (Pytago): Cha đẻ Của định Lý Vĩ đại ...
-
Tiểu Sử Và Chiến Tích Của Pythagoras | Khí Tượng Mạng
-
Pythagoras (Pytago) - Thiên Tài Toán Học Thời Cổ Đại Và Định Lý ...
-
Định Lý Pitago Là Gì? Hệ Quả Và Các ứng Dụng Của ... - DINHNGHIA.VN
-
Định Lí Pytago Và Cách ứng Dụng định Lí Pytago Vào Giải Toán
-
Py Ta Go Đảo Và Py Ta Go ( đầy đủ Công Thức định Lý Pytago)
-
Định Lý Pytago Và Cách áp Dụng định Lý Pitago Làm Bài Tập
-
Pytago Và Cuộc đời ít Ai Biết
-
Pythagoras - Nhà Toán Học Thiên Tài Của Thời Cổ đại! - SOHA
-
Định Lý Pitago Thuận, đảo Là Gì Và Những Kiến Thức Cơ Bản