Cách để Tính Diện Tích Của đa Giác đều - WikiHow
Có thể bạn quan tâm
- Đăng nhập / Đăng ký
Bài viết này đã được cùng viết bởi David Jia. David Jia là giáo viên phụ đạo và người sáng lập của LA Math Tutoring, một cơ sở dạy kèm tư nhân có trụ sở tại Los Angeles, California. Với hơn 10 năm kinh nghiệm giảng dạy, David dạy nhiều môn học khác nhau cho học sinh ở mọi lứa tuổi và cấp lớp, cũng như tư vấn tuyển sinh đại học và luyện thi SAT, ACT, ISEE, v.v... Sau khi đạt được 800 điểm toán và 690 điểm tiếng Anh trong kỳ thi SAT, David đã được nhận Học bổng Dickinson của Đại học Miami, nơi anh tốt nghiệp với tấm bằng cử nhân quản trị kinh doanh. Ngoài ra, David từng làm người hướng dẫn trong các video trực tuyến cho các công ty sách giáo khoa như Larson Texts, Big Ideas Learning và Big Ideas Math. Bài viết này đã được xem 37.547 lần.
Trong bài viết này: Tính diện tích Hiểu khái niệm theo một cách khác Bài viết có liên quan Tham khảoĐa giác đều là một hình học hai chiều với các cạnh bằng nhau và các góc bằng nhau. Nhiều đa giác, chẳng hạn như hình chữ nhật hay hình tam giác có công thức tính diện tích khá đơn giản, nhưng nếu bạn đang làm toán với một đa giác có nhiều hơn bốn cạnh thì tốt nhất là sử dụng đường trung đoạn và chu vi của hình đó. Chỉ cần cố gắng một chút, bạn sẽ tìm ra diện tích của đa giác đều chỉ trong vài phút.
Các bước
Phần 1 Phần 1 của 2:Tính diện tích
Tải về bản PDF- 1 Tính chu vi. Chu vi là tổng chiều dài các mặt ngoài của bất kỳ hình học phẳng nào. Với một đa giác đều, chu vi có thể được tính bằng cách nhân chiều dài một cạnh với số cạnh của nó (n).[1]
-
- Công thức tính độ dài đường trung đoạn là: độ dài cạnh (s) chia cho tất cả 2 lần (tan) của thương số 180 độ và số cạnh (n).
2 Xác định đường trung đoạn. Đường trung đoạn của một đa giác đều là đoạn thẳng vuông góc hạ từ tâm xuống một cạnh của nó. Đường trung đoạn hơi khó để tính hơn một chút so với chu vi. - 3 Biết công thức đúng. Diện tích của bất kỳ đa giác đều nào cũng được tính bằng công thức:Diện tích = (a x p)/2, trong đó, a là độ dài đường trung đoạn và p là chu vi đa giác đó.
-
- Chu vi hình lục giác 6 x 10 (n x s) bằng 60 (vậy p = 60).
- Tính đường trung đoạn bằng công thức của chính nó, ta gán giá trị 6 và 10 vào n và s. Kết quả của biểu thức 2tan(180/6) sẽ là 1,1547, sau đó, lấy 10 chia tiếp cho 1,1547 ra 8,66.
- Diện tích của đa giác: Diện tích = a x p / 2, hay 8,66 nhân với 60 rồi chia cho 2. Đáp án là 259,8 đơn vị.
- Lưu ý: không có dấu ngoặc đơn trong biểu thức tính "Diện tích", vì vậy 8,66 chia cho 2 rồi nhân cho 60 hay 60 chia cho 2 rồi nhân cho 8,66 đều cho ra kết quả giống nhau.
4 Gán các giá trị a và p vào công thức và tính diện tích. Ví dụ, ta có một hình lục giác (6 cạnh) với mỗi cạnh (s) có độ dài bằng 10.
Hiểu khái niệm theo một cách khác
Tải về bản PDF- 1 Hiểu rằng mỗi đa giác đều có thể được xem là một tập hợp các hình tam giác. Mỗi cạnh của đa giác đại diện cho cạnh đáy của tam giác, và số cạnh của đa giác là số hình tam giác có trong đa giác đó. Mỗi tam giác đều có chiều dài cạnh đáy, chiều cao và diện tích như nhau.[2]
- 2 Nhớ lại công thức tính diện tích hình tam giác. Diện tích của bất kỳ hình tam giác nào cũng bằng 1/2 tích số của cạnh đáy (ở đây chính là cạnh của đa giác) và chiều cao (chính là đường trung đoạn của đa giác đều).[3]
- 3 Phân tích sự tương đồng. Xin nhắc lại, công thức của đa giác đều là 1/2 tích số của đường trung đoạn và chu vi. Chu vi của đa giác là tích của chiều dài mỗi cạnh nhân với số cạnh (n); đối với một đa giác đều, n cũng đại diện cho số hình tam giác cấu thành đa giác đó. Vậy, công thức này không gì khác hơn chính là tổng diện tích của tất cả hình tam giác nằm trong đa giác đó.[4] Quảng cáo
Lời khuyên
- Nếu bản vẽ của hình bát giác (hay bất cứ hình nào) mà đề bài cho đã được chia thành các hình tam giác và diện tích của một hình tam giác được cho sẵn thì bạn không cần phải tìm đường trung đoạn. Chỉ cần lấy diện tích của hình tam giác đó nhân với số cạnh của đa giác.
Bài viết wikiHow có liên quan
Cách đểLàm tròn Số Cách đểLàm tròn đến chữ số phần mười gần nhất Cách đểTính Diện tích Hình Lục giác Cách đểĐổi từ Số Thập phân sang Nhị phân Cách đểTìm định thức ma trận 3x3 Cách đểTính Bậc của Đa thức Cách đểTính số đo góc Cách đểTìm nghịch đảo của ma trận 3x3 Cách đểChia phân số cho phân số Cách đểTìm chiều dài cạnh huyền Cách đểQuy đổi từ mililit sang gam Cách đểTính Thể tích của Hình lăng trụ Tam giác Quảng cáoTham khảo
- ↑ http://www.mathplanet.com/education/pre-algebra/inequalities-and-one-step-equations/calculating-the-area-and-the-perimeter
- ↑ http://www.mathsisfun.com/geometry/regular-polygons.html
- ↑ http://geomalgorithms.com/a01-_area.html
- ↑ http://www.mathsisfun.com/geometry/regular-polygons.html
Về bài wikiHow này
Cùng viết bởi: David Jia Giáo viên phụ đạo môn toán Bài viết này đã được cùng viết bởi David Jia. David Jia là giáo viên phụ đạo và người sáng lập của LA Math Tutoring, một cơ sở dạy kèm tư nhân có trụ sở tại Los Angeles, California. Với hơn 10 năm kinh nghiệm giảng dạy, David dạy nhiều môn học khác nhau cho học sinh ở mọi lứa tuổi và cấp lớp, cũng như tư vấn tuyển sinh đại học và luyện thi SAT, ACT, ISEE, v.v... Sau khi đạt được 800 điểm toán và 690 điểm tiếng Anh trong kỳ thi SAT, David đã được nhận Học bổng Dickinson của Đại học Miami, nơi anh tốt nghiệp với tấm bằng cử nhân quản trị kinh doanh. Ngoài ra, David từng làm người hướng dẫn trong các video trực tuyến cho các công ty sách giáo khoa như Larson Texts, Big Ideas Learning và Big Ideas Math. Bài viết này đã được xem 37.547 lần. Chuyên mục: Toán học Ngôn ngữ khác Tiếng Anh Tiếng Tây Ban Nha Tiếng Nga Tiếng Pháp Tiếng Indonesia Tiếng Trung Tiếng Hà Lan Tiếng Ả Rập Tiếng Thái Tiếng Nhật Tiếng Hindi- In
Bài viết này đã giúp ích cho bạn?
Có Không Quảng cáo Cookie cho phép wikiHow hoạt động tốt hơn. Bằng việc tiếp tục sử dụng trang web của chúng tôi, bạn đồng ý với chính sách cookie của chúng tôi.Bài viết có liên quan
Cách đểLàm tròn SốCách đểLàm tròn đến chữ số phần mười gần nhấtCách đểTính Diện tích Hình Lục giácCách đểĐổi từ Số Thập phân sang Nhị phânTheo dõi chúng tôi
Chia sẻ
TweetPin It- Chuyên mục
- Giáo dục và Truyền thông
- Khoa học và Công nghệ
- Toán học
- Trang chủ
- Giới thiệu về wikiHow
- Các chuyên gia
- Liên hệ với chúng tôi
- Sơ đồ Trang web
- Điều khoản Sử dụng
- Chính sách về Quyền riêng tư
- Do Not Sell or Share My Info
- Not Selling Info
Theo dõi chúng tôi
--355Từ khóa » Diện Tích đa Giác đều N Cạnh
-
Công Thức Tính Diện Tích đa Giác đều N Cạnh - Toán Học Việt Nam
-
Công Thức Tính Diện Tích Và Chu Vi Hình đa Giác đều - CungHocVui
-
Diện Tích Và Chu Vi Của đa Giác đều - Phép Tính Online
-
Đa Giác Đều - Công Thức, Cách Tính Diện Tích & Chu Vi
-
Đa Giác đều – Wikipedia Tiếng Việt
-
Công Thức Tổng Quát Tính Diện Tích đa Giác? - Randomq - Dạy Nhau Học
-
Định Nghĩa, Công Thức Tính Diện Tích Và Chu Vi đa Giác đều
-
Công Thức Cách Tính Diện Tích Hình đa Giác đều - YouTube
-
Các Công Thức Tính Diện Tích Đa Giác Lớp 8 Bài 6
-
Cách Tính Cạnh Hình Bát Giác đều - Quang An News
-
Công Thức Tính Cạnh Của đa Giác đều
-
Diện Tích Và Chu Vi Của đa Giác
-
Công Thức Tính Diện Tích Của N Giác đều - Hoc24