Cách Giải Bài Toán Dạng: Lũy Thừa Của Số Hữu Tỉ Toán Lớp 7
Có thể bạn quan tâm
A. PHƯƠNG PHÁP GIẢI
1. Viết dưới dạng lũy thừa của một số hữu tỉ
Ta viết như dạng lũy thừa của một số nguyên.
Ví dụ 1: Viết số $\frac{16}{81}$ dưới dạng một lũy thừa, ví dụ như $\frac{16}{81}=\left (\frac{4}{9} \right )^{2}$. Hãy tìm các cách viết khác:
Hướng dẫn:
$\frac{16}{81}=\left (\frac{-4}{9} \right )^{2}=\left (\frac{2}{3} \right )^{4}=\left (\frac{-2}{3} \right )^{4}$
2. Tìm số chưa biết
* Tìm cơ số, thành phần của cơ số trong lũy thừa
Ta đưa về hai lũy thừa về cùng số mũ.
Đối với bài toán này, học sinh chỉ cần nắm vững kiến thức cơ bản có thể dễ dàng làm được, lưu ý với số mũ chăn, học sinh cần xét hai trường hợp.
Ví dụ 2: Tìm x biết:
a) $x^{3}=-27$
b) $(2x-1)^{3}=8$
c) $(x-2)^{2}=16$
d) $(2x-3)^{2}=9$
Hướng dẫn:
a) $x^{3}=-27$
$\Leftrightarrow x^{3} = (-3)^{3}$
$\Leftrightarrow x = -3$
Vậy x = -3
b) $(2x-1)^{3}=8$
$\Leftrightarrow (2x-1)^{3}=2^{3}$
$\Leftrightarrow 2x - 1 = 2$
$\Leftrightarrow x=\frac{3}{2}$
Vậy $x=\frac{3}{2}$
c) $(x-2)^{2}=16$
$\Leftrightarrow (x-2)^{2}=4^{2}$
$\Leftrightarrow x-2=4$ hoặc $x-2=-4$
$\Leftrightarrow x=6$ hoặc $x=-2$
Vậy $x=6$ hoặc $x=-2$
d) $(2x-3)^{2}=9$
$\Leftrightarrow (2x-3)^{2}=3^{2}$
$\Leftrightarrow 2x - 3 = 3$ hoặc $2x - 3 = -3$
$\Leftrightarrow x=3$ hoặc $x=0$
Vậy $x=3$ hoặc $x=0$
* Tìm số mũ, thành phần trong số mũ của lũy thừa
Ta đưa về hai lũy thừa có cùng cơ số
Ví dụ 3: a) $2008^{n}=1$
b) $32^{-n}.16^{n}=1024$
c) $5^{n}+5^{n+2}=650$
Hướng dẫn:
a) $2008^{n}=1$
$\Leftrightarrow 2008^{n} = 2008^{0}$
$\Leftrightarrow n=0$
b) $32^{-n}.16^{n}=1024$
$\Leftrightarrow (2.16)^{-n}.16^{n}=1024$
$\Leftrightarrow 2^{-n}.16^{n}.16^{n}=1024$
$\Leftrightarrow 2^{-n}=2^{10}$
$\Leftrightarrow n=-10$
c) $5^{n}+5^{n+2}=650$
$\Leftrightarrow 5^{n}+5^{n}.5^{2}=650$
$\Leftrightarrow 5^{n}.(1+25)=650$
$\Leftrightarrow 5^{n}=25$
$\Leftrightarrow 5^{n}=5^{2}$
$\Leftrightarrow n=2$
3. So sánh hai lũy thừa
Để so sánh hai lũy thừa ta thường biến đổi về hai lũy thừa có cùng cơ số hoặc dùng lũy thừa trung gian để so sánh.
Lưu ý một số tính chất:
Với a, b, m, n $\in N$, ta có:
$a > b \Leftrightarrow a^{n} > b^{n}\forall n\in N*$
$m>n\Leftrightarrow a^{m}>a^{n}(a>1)$
a = 0 hoặc a = 1 thì $a^{m}=a^{n}$ ($m, n \neq 0$)
Với A, B là các biểu thức ta có:
$A^{n}>B^{n}\Leftrightarrow A>B>0$
$A^{m}>A^{n}\Leftrightarrow m >n; A>1$ hoặc $m <n; A<1$
Ví dụ 4: So sánh A và B biết:
A = $\frac{2008^{2008}+1}{2008^{2009}+1}$
B = $\frac{2008^{2007}+1}{2008^{2008}+1}$
Hướng dẫn:
Áp dụng tính chất: Nếu $\frac{a}{b}<1$ thì $\frac{a}{b}<\frac{a+c}{b+c}$ với a, b, c là các số tự nhiên khác 0.
Ta có:
A = $\frac{2008^{2008}+1}{2008^{2009}+1}<\frac{2008^{2008}+1+2007}{2008^{2009}+1+2007}=\frac{2008^{2008}+2008}{2008^{2009}+2008}=\frac{2008.(2008^{2007}+1)}{2008.(2008^{2008}+1)}=\frac{2008^{2007}+1}{2008^{2008}+1}$=B
Vậy A < B
4. Tính toán các lũy thừa
Vận dụng linh hoạt các công thức, phép tính về lũy thừa để tính cho hợp lí và nhanh. Biết kết hợp hài hòa một số phương pháp trong tính toán khi biến đổi.
Ví dụ 5: Tìm giá trị của biểu thức sau:
a) $\frac{4^{3}.4^{2}}{2^{10}}$
b) $\frac{(0,6)^{5}}{(0,2)^{6}}$
Hướng dẫn:
a) $\frac{4^{3}.4^{2}}{2^{10}}$ = $\frac{4^{5}}{(2^{2})^{5}}$ = $\frac{4^{5}}{4^{5}}$ = 1
b) $\frac{(0,6)^{5}}{(0,2)^{6}}$ = $\frac{(0,2.3)^{5}}{(0,2)^{6}}$ = $\frac{(0,2)^{5}.3^{5}}{(0,2)^{6}}$ = $\frac{3^{5}}{0,2}$ = 1215
Từ khóa » Bài Tập Nâng Cao Lũy Thừa Lớp 7
-
Chuyên đề : Toán Lũy Thừa Lớp 7 Nâng Cao Và Bài Tập Vận Dụng
-
Phiếu Bài Tập Lũy Thừa Của Một Số Hữu Tỉ (word) Cơ Bản Và Nâng Cao
-
Bài Tập Về Lũy Thừa Hay Nhất - TopLoigiai
-
Bài Tập Lũy Thừa Lớp 7 Nâng Cao
-
Bài Tập Toán Lớp 7: Lũy Thừa Của Một Số Hữu Tỉ
-
Toán 7 [Nâng Cao] - Bài Tập Về Lũy Thừa Của Một Số Hữu Tỉ. - YouTube
-
Các Bài Toán Nâng Cao Về Lũy Thừa Lớp 7
-
Giáo án Bồi Dưỡng Học Sinh Giỏi Toán 7 - SlideShare
-
Luyện Tập Lũy Thừa Của Số Hữu Tỉ - Các Phương Pháp Giải Toán 7
-
Lũy Thừa Của Một Số Hữu Tỉ
-
Bài Tập So Sánh 2 Lũy Thừa Nâng Cao Có Lời Giải - Học Toán 123
-
Chuyên đề Về Lũy Thừa Lớp 7 Hay Cho Học Sinh - Tài Liệu Text - 123doc
-
Các Phương Pháp Giải Bài Tập Về Lũy Thừa Của Một Số Hữu Tỉ
-
Bài Tập Lũy Thừa Lớp 7 | Leo-đè