Cách Giải Phương Trình Chứa Dấu Căn Và Bài Tập Vận Dụng

I. Kiến thức cần nhớ khi giải phương trình chứa dấu căn

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

II. Cách giải Phương trình có chứa dấu căn

1. Giải phương trình chứa căn thức dạng:  với e ≥ 0 là hằng số

i) Trường hợp:  hoặc  thì:

+ Bước 1: Tìm điều kiện của x để f(x) ≥ 0

+ Bước 2: Bình phương 2 vế phương trình để khử căn.

+ Bước 3: Giải phương trình để tìm nghiệm x thỏa mãn điều kiện

* Ví dụ 1: Tìm x?

a)

b) 

c) 

d)

° Lời giải:

a) (*)

- Điều kiện: x ≥ 0, khi đó bình phương 2 vế ta có:

 

- Ta thấy x = 4 thỏa điều kiện nên pt có nghiệm x = 4.

b)  (*)

- Điều kiện: x ≥ 0, khi đó bình phương 2 vế ta có:

 

- Ta thấy x = 5/4 thỏa điều kiện nên pt có nghiệm x = 5/4.

c)  (*)

- Điều kiện: x - 1 ≥ 0 ⇔ x ≥ 1; khi đó ta có (ở bày này ta có thể rút gọn hệ số trước khi bình phương 2 vế):

 

  

- Ta thấy x = 50 thỏa điều kiện nên pt có nghiệm x = 50.

d) (*)

- Vì (1 - x)2 ≥ 0 ∀x nên pt xác định với mọi giá trị của x.

 

→ Vậy phương trình có 2 nghiệm x = -2 hoặc x = 4

* Ví dụ 2: Giải các phương trình sau:

a)  

b) 

° Lời giải:

a)   (*)

- Điều kiện: 

- Khi đó bình phương 2 vế ta được:

  

- Đối chiếu điều kiện (x < 1 hoặc x ≥ 3/2) ta thấy x = 1/2 thỏa điều kiện, nên ta nhận nghiệm này. Kết luận pt có nghiệm x = 1/2.

b)  (*)

- Điều kiện:

- Khi đó bình phương 2 vế ta được:

 

- Đối chiếu điều kiện (x ≥ 3/2) ta thấy x = 1/2 không thỏa điều kiện này, nên ta KHÔNG nhận nghiệm này. Kết luận pt vô nghiệm.

ii) Trường hợp:  (*) thì ta cần kiểm tra biểu thức f(x).

+) Nếu f(x) = ax2 + bx + c = (Ax ± B)2 tức là có dạng hằng đẳng thức thì KHAI CĂN, tức là:

 

+) Nếu  không có dạng hằng đẳng thức thì ta thực hiện các bước sau:

- Bước 1: Điều kiện f(x) ≥ 0

- Bước 2: Bình phương 2 vế phương trình để khử căn thức

- Bước 3: Giải phương trình bậc 2 (bằng cách phân tích thành nhân tử đưa về pt tích).

* Ví dụ 1: Giải phương trình sau:  (*)

° Lời giải:

- Vì: 2x2 - 8x + 8 = 2(x2 - 4x + 4) = 2(x - 2)2 nên ta có:

 

  

* Ví dụ 2: Giải phương trình sau:  (*)

° Lời giải:

- Ta thấy: x2 - 4x + 6 = x2 - 4x + 4 + 2 = (x - 2)2 + 2 không có dạng (Ax ± B)2 nên ta thực hiện như sau:

- Điều kiện: x2 - 4x + 6 ≥ 0 ⇔ (x - 2)2 + 2 ≥ 0 ∀x nên biểu thức xác định với mọi giá trị của x.

- Bình phương 2 vế phương trình ta được:

(x - 2)2 + 2 = 11 ⇔ (x - 2)2 = 9 

- Kết luận: Phương trình có 2 nghiệm x = -1 và x = 5.

2. Giải phương trình chứa dấu căn dạng: 

* Phương pháp giải:

- Bước 1: Viết điều kiện của phương trình: 

- Bước 2: Nhận dạng từng loại tương ứng với các cách giải sau:

 ¤ Loại 1: Nếu f(x) có dạng hằng đẳng thức (Ax ± B)2 thì khai căn đưa về phương trình trị tuyệt đối để giải.

 ¤ Loại 2: Nếu f(x) = Ax ± B và g(x) = Ex ± D thì dùng phương pháp bình phương 2 vế.

 ¤ Loại 3: Nếu f(x) = Ax2 + Bx + C [không có dạng hằng đẳng thức (Ax ± B)2] và g(x) = Ex ± D thì dùng phương pháp bình phương 2 vế.

 ¤ Loại 4: Nếu f(x) = Ax2 + Bx + C và g(x) = Ex2 + Dx + F thì thử phân tích f(x) và g(x) thành nhân tử, nếu chúng có nhân tử chung thì đặt nhân tử chung đưa về phương trình tích.

- Bước 3: Kiểm tra nghiệm tìm được có thỏa mãn điều kiện không sau đó kết luận nghiệm của phương trình.

* Ví dụ 1: Giải phương trình sau:

° Lời giải:

- Ta có:  

 

 

- Vậy phương trình vô nghiệm

* Ví dụ 2: Giải phương trình sau:  (*)

° Lời giải:

- Ta có: 

 

- Vậy phương trình có vô số nghiệm x ≤ 3.

* Ví dụ 3: Giải phương trình sau: 

° Lời giải:

- Điều kiện: 

- Bình phương 2 vế ta được:

 2x - 3 = (x - 1)2 

⇔ 2x - 3 = x2 - 2x + 1

⇔ x2 - 4x + 4 = 0 

⇔ (x - 2)2 = 0 

⇔ x = 2.

- Đối chiếu với điều kiện ta thấy x = 2 thỏa điều kiện nên phương trình nhận nghiệm này.

- Phương trình có nghiệm x = 2.

* Ví dụ 4: Giải phương trình sau: (*)

° Lời giải:

- Ta thấy: f(x) = x2 - 5x - 6 không có dạng hằng đẳng thức (Ax ± B)2 (và vế phải là dạng hàm bậc 1) nên để khử căn ta dùng phương pháp bình phương 2 vế.

- Điều kiện:  khi đó ta bình phương 2 vế được:

- Kiểm tra x = -10 có thỏa mãn điều kiện không bằng cách thay giá trị này vào các biểu thức điều kiện thấy không thỏa

→ Vậy phương trình vô nghiệm.

3. Giải phương trình chứa dấu căn dạng:  

* Để giải phương trình dạng này ta thực hiện các bước sau:

- Bước 1: Nếu f(x) và h(x) có chứa căn thì phải có điều kiện biểu thức trong căn ≥ 0.

- Bước 2: Khử căn thức đưa phương trình về dạng pt trị tuyệt đối: |f(x)| ± |h(x)| = g(x).

- Bước 3: Xét dấu trị tuyệt đối (khử trị tuyệt đối) để giải phương trình.

* Ví dụ 1: Giải phương trình:  (*)

° Lời giải:

- Điều kiện: x ≥ 0.

- Mặt khác, ta thấy:  và  nên ta có:

  (**)

- Ta xét các trường hợp để phá dấu trị tuyệt đối:

+) TH1: Nếu , ta có:

 

⇒ Phương trình có vô số nghiệm x ≥ 9.

+) TH2: Nếu  , ta có:

 

- Đối chiếu điều kiện ta thấy x = 9 không thỏa đk nên loại.

+) TH3: Nếu 

+) TH4: Nếu , ta có:

 

→ Phương trình vô nghiệm.

⇒ Kết luận: Vậy phương trình có vô số nghiệm x ≥ 9.

* Ví dụ 2: Giải phương trình:

° Lời giải:

- Điều kiện: x ≥ 1

- Nhận thấy: 

  

- Đến đây xét các trường hợp giải tương tự ví dụ 1 ở trên.

4. Cách giải một số phương trình chứa căn khác.

i) Phương pháp đặt ẩn phụ để giải phương trình chứa dấu căn.

* Ví dụ 1: Giải phương trình sau:  (*)

° Lời giải:

- Điều kiện: x ≥ 0

 Đặt  khi đó ta có pt (*) trở thành:

 

- Cả 2 nghiệm t đều thỏa điều kiện nên ta có:

 

 

(Cách giải pt bậc 2 một ẩn các em sẽ học ở nội dung bài chương sau).

* Ví dụ 2: Giải phương trình sau:  (*)

° Lời giải:

- Điều kiện: 

 Đặt , khi đó pt(*) trở thành:

 

- Ta thấy pt(**) có dạng ở mục 2) loại 3; với điều kiện 5 - t ≥ 0 ⇔ t ≤ 5; ta bình phương 2 vế (**) được:

 t2 + 5 = (5 - t)2 ⇔ t2 + 5 = t2 - 10t + 25 ⇔ 10t = 20 ⇔ t= 2

- Với t = 2 thỏa điều kiện 0≤ t ≤ 5 nên ta có:

  

→ Phương trình có nghiệm x = 6.

* Ví dụ 3: Giải phương trình sau:  (*)

° Lời giải:

- Điều kiện: x2 - 2x - 3 ≥ 0. Khi đó ta có:

 Đặt  khi đó pt(**) trở thành:

 

- Đối chiếu điều kiện thì t = -5 loại và t = 2 nhận.

 Với t = 2 ⇒ x2 - 2x - 3 = 4 ⇔ x2 - 2x - 7 = 0 ⇔ (x2 - 2x + 1) - 8 = 0.

 

- Kiểm tra thấy 2 nghiệm x trên thỏa điều kiện nên pt có 2 nghiệm. x = 1 ± 2√2.

ii) phương pháp đánh giá biểu thức dưới dấu căn (lớn hơn hoặc nhỏ hơn 1 hằng số) để giải phương trình chứa căn thức.

- Áp dụng với phương trình chứa căn thức dạng:  (với c,d>0 và c+d=e)

- PT có thể cho ngay dạng này hoặc có thể tách một hệ số nào đó để có [f(x)]2; [h(x)]2 hay [g(x)]2;

* Ví dụ: Giải phương trình sau: (*)

° Lời giải:

- Ta nhận thấy:

 

 

 

- Do đó:  dấu "=" xảy ra khi và chỉ khi:

  

→ Vậy phương trình có nghiệm x = -1.

III. Một số bài tập về phương trình có chứa dấu căn

* Bài 1: Giải các phương trình sau:

a)

b)

* Bài 2: Giải các phương trình sau:

a)

b)

c)

* Bài 3: Giải các phương trình sau

a)

b)

c)

d)

Từ khóa » Giải Hệ Phương Trình Chứa Căn Lớp 9