Cách Giải Và Biện Luận Hệ Phương Trình Bậc Nhất Cực Hay - Toán Lớp ...

Cách giải và biện luận hệ phương trình bậc nhất (cực hay)
  • Siêu sale sách Toán - Văn - Anh Vietjack 25-12 trên Shopee mall
Trang trước Trang sau

Bài viết Cách giải và biện luận hệ phương trình bậc nhất với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải và biện luận hệ phương trình bậc nhất.

  • Lý thuyết và cách giải bài tập giải và biện luận hệ phương trình bậc nhất
  • Ví dụ minh họa bài tập giải và biện luận hệ phương trình bậc nhất
  • Bài tập tự luyện giải và biện luận hệ phương trình bậc nhất

Cách giải và biện luận hệ phương trình bậc nhất (cực hay)

Lý thuyết & Phương pháp giải

Quảng cáo

1. Phương trình bậc nhất hai ẩn

Phương trình bậc nhất hai ẩn x, y có dạng tổng quát là

ax + by = c (1)

trong đó a, b, c là các hệ số, với điều kiện a và b không đồng thời bằng 0.

CHÚ Ý

a. Khi a = b = 0 ta có phương trình 0x + 0y = c. Nếu c ≠ 0 thì phương trình này vô nghiệm, còn nếu c = 0 thì mọi cặp số (x0; y0) đều là nghiệm.

b. Khi b ≠ 0, phương trình ax + by = c trở thành

y = (-a/b)x + c/b (2)

Cặp số (x0; y0) là một nghiệm của phương trình (1) khi và chỉ khi điểm M(x0; y0) thuộc đường thẳng (2).

Tổng quát, người ta chứng minh được rằng phương trình bậc nhất hai ẩn luôn luôn có vô số nghiệm. Biểu diễn hình học tập nghiệm của phương trình của phương trình (1) là một đường thẳng trong mặt phẳng tọa độ Oxy.

2. Hệ hai phương trình bậc nhất hai ẩn

Hệ phương trình bậc nhất hai ẩn có dạng tổng quát là

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Trong đó x, y là hai ẩn; các chữ số còn lại là hệ số.

Nếu cặp số (x0; y0) đồng thời là nghiệm của cả hai phương trình của hệ thì (x0; y0) được gọi là một nghiệm của hệ phương trình (1).

Giải hệ phương trình (1) là tìm tập nghiệm của nó

Công thức nghiệm: Quy tắc Crame.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án
Xét DKết quả
D ≠ 0Hệ có nghiệm duy nhất x = Dx/D , y = Dy/D
D = 0Dx ≠ 0 hoặc Dy ≠ 0Hệ vô nghiệm.
Dx = Dy = 0Hệ có vô số nghiệm.
Quảng cáo

Để giải hệ phương trình bậc nhất hai ẩn ta có thể dùng các cách giải đã biết như: phương pháp thế, phương pháp cộng đại số.

Biểu diễn hình học của tập nghiệm:

Nghiệm (x; y) của hệ (I) là tọa độ điểm M(x; y) thuộc cả 2 đường thẳng:

(d1): a1x + b11y = c1 và (d2): a2x + b2y = c2

+ Hệ (I) có nghiệm duy nhất ⇔(d1) và (d2) cắt nhau.

+ Hệ (I) vô nghiệm ⇔ (d1) và (d2) song song với nhau.

+ Hệ (I) có vô số nghiệm ⇔ (d1) và (d2) trùng nhau.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

3. Hệ ba phương trình bậc nhất ba ẩn

Phương trình bậc nhất ba ẩn có dạng tổng quát là

ax + by + cz = d

trong đó x, y, z là ba ẩn; a, b, c, d là các hệ số và a, b, c không đồng thời bằng 0

Hệ phương trình bậc nhất ba ẩn có dạng tổng quát là

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Trong đó x, y, z là ba ẩn; các chữ còn lại là các hệ số.

Mỗi bộ ba số (x0, y0, z0) nghiệm đúng của ba phương trình của hệ được gọi là một nghiệm của hệ phương trình (2).

Phương pháp giải

Nguyên tắc chung để giải các hệ phương trình nhiều ẩn là khử bớt ẩn để đưa về các phương trình hay hệ phương trình có số ẩn ít hơn. Để khử bớt ẩn, ta cũng có thể dùng các phương pháp cộng đại số, phương pháp thế như đối với hệ phương trình bậc nhất hai ẩn.

Quảng cáo

Ví dụ minh họa

Bài 1: Giải hệ phương trình

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Lời giải:

a. Ta có: y = 1-√2x ⇒ 3x + √2(1-√2.x) = 2 ⇒ x = 2 - √2 ⇒ y = 3 - 2√2

b. Ta có: Thế y = 4 - 2x vào phương trình y + z = 2 + √2 ta được -2x + z = -2 + √2

Giải hệ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ta được x = 1; z = √2 ⇒ y = 2

Bài 2: Giải hệ phương trìnhToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Lời giải:

ĐK: xy ≠ 0. Khi đó

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bài 3: Có bao nhiêu cặp số nguyên (a; b) sao cho hệ phương trình

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án vô nghiệm

Lời giải:

Ta có ax + y = 2 ⇒ y = 2 - ax

Thay vào phương trình 6x + by = 6 có

6x + b(2-ax) = 6 ⇔ x(6-ab) + 2b - 6 = 0

Hệ vô nghiệm khi và chỉ khi phương trình x(6-ab) + 2b - 6 = 0 vô nghiệm

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Do (a; b) nguyên nên (a; b) = {(6; 1); (1; 6); (-6; -1); (-1; -6); (-2; -3); (-3; -2); (3; 2)}

Quảng cáo

Bài 4: Gọi (x0; y0; z0) là nghiệm của hệ phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Tính giá trị của biểu thức P = x0y0z0

Lời giải:

Ta có Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Phương trình (3) ⇔ z = 24 - 3x - 2y. Thay vào (1) và (2) ta được hệ phương trình

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra z = 24 - 3.4 - 2.5 = 2

Vậy hệ phương trình có nghiệm (x; y; z) = (4; 5; 2) → P = 4.5.2 = 40

Bài 5: Tìm giá trị thực của tham số m để hệ phương trình

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp áncó duy nhất một nghiệm.

Lời giải:

Từ hệ phương trình đã cho ta suy ra

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hệ phương trình

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Có nghiệm duy nhất khi (1; -2) là nghiệm của phương trình 2mx + 5y - m = 0 tức là 2m.1 + 5.(-2) - m = 0 ⇔ m = 10

Bài 6: Cho hệ phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án. Tìm các giá trị thích hợp của tham số a để tổng bình phương hai nghiệm của hệ phương trình đạt giá trị nhỏ nhất.

Lời giải:

Ta có :

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Đẳng thức xảy ra khi a = 1/2

C. Bài tập tự luyện

Bài 1. Cho hệ phương trình

(m+1)x-y=m+1      (1)x+(m-1)y=2             (2)

Giải và biện luận hệ phương trình bậc nhất 2 ẩn trên theo tham số m.

Hướng dẫn giải:

Từ (1), ta có

y = (m + 1)x – (m + 1)          (3)

Thế vào (2) ta được

x + (m – 1)[(m + 1)x - (m + 1)] = 2

⇔ x(m2 - 1)x - (m2 - 1) = 2

⇔ m2x = m2 + 1         (4)

• TH1: Nếu m ≠ 0 thì PT (4) có nghiệm duy nhất

x=m2+1m2 thay vào (3) ta có

Cách giải và biện luận hệ phương trình bậc nhất (cực hay)

Khi đó hệ có nghiệm duy nhất (x;y) = m2+1m2;m+1m2.

• TH2: Nếu m = 0 thì PT (4) trở thành 0x = 1 nên vô nghiệm

Khi đó hệ phương trình vô nghiệm.

Vậy với m ≠ 0 hệ có nghiệm duy nhất (x;y) = m2+1m2;m+1m2;

với m = 0 hệ vô nghiệm.

Bài 2. Cho hệ phương trình mx+3y=-2    (1)m2x-6y=4      (2) 

Tìm m để hệ có nghiệm duy nhất.

Hướng dẫn giải:

Từ (1), ta có y=13(-mx-2)        (3)

Thế vào (2) ta được

m2x-6.13(-mx-2)=4

⇔(m2+2m)x=0              (4)

Hệ có nghiệm duy nhất khi m2 + 2m ≠ 0 ⇔ m ≠ 0; m ≠ -2.

Bài 3. Cho hệ phương trình x+y=1            (1)mx+2y=m      (2)

Tìm m để hệ có nghiệm duy nhất.

Hướng dẫn giải:

Từ (1), ta có y = 1 - x         (3)

Thế vào (2) ta được

mx - 2(1 - x) = m

⇔ (m - 2)x = m - 2             (4)

Hệ có nghiệm duy nhất khi m - 2 ≠ 0 ⇔ m ≠ 2.

Bài 4. Cho hệ phương trình x+my=1         (1)mx-y=-m    (2)

Chứng tỏ rằng với mọi m hệ có nghiệm duy nhất.

Hướng dẫn giải:

Từ (2), ta có y = mx + m   (3)

Thế vào (1) ta được

x + m(mx + m) = 1

⇔ (m2 + 1)x = 1 - m2

⇔ x=1-m2m2+1           (4)

Thế vào (3) ta được

y=m.1-m2m2+1+m=m(1-m2)+m(m2+1)m2+1=2mm2+1

Vậy hệ có nghiệm duy nhất với mọi m.

Hệ có nghiệm duy nhất khi m - 2 ≠ 0 ⇔ m ≠ 2.

Bài 5. Cho hệ phương trình x+y=1              (1)mx+2y=m        (2)

Tìm m để hệ có vô số nghiệm.

Hướng dẫn giải:

Từ (1), ta có y = 1 - x            (3)

Thế vào (2) ta được mx - 2(1 - x) = m ⇔ (m - 2)x = m - 2        (4)

Hệ có vô số nghiệm khi m - 2 = 0 ⇔ m = 2.

Bài 6. Cho hệ phương trình x+my=1              (1)5x-3y=m+1      (2)

Tìm m để hệ có nghiệm.

Bài 7. Cho hệ phương trình x-3y=m                  (1)-5x+15y=-20      (2)

Tìm m để hệ có vô số nghiệm.

Bài 8. Cho hệ phương trình 3mx+5y=1              (1)2x+my=4                 (2)

Tìm m để hệ có nghiệm duy nhất.

Bài 9. Cho hệ phương trình mx+2y=5              (1)2x+y=m                (2)

Tìm m để hệ có nghiệm duy nhất.

Bài 10. Cho hệ phương trình x-3y=m                  (1)-5x+15y=-20      (2)

Tìm m để hệ vô nghiệm.

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

  • Phương trình chứa ẩn dưới dấu căn
  • Bài tập phương trình chứa ẩn dưới dấu căn
  • Các dạng phương trình quy về phương trình bậc hai
  • Bài tập phương trình quy về phương trình bậc hai

Lời giải bài tập lớp 10 sách mới:

  • Giải bài tập Lớp 10 Kết nối tri thức
  • Giải bài tập Lớp 10 Chân trời sáng tạo
  • Giải bài tập Lớp 10 Cánh diều
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):

  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
  • 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

Đề thi, chuyên đề Cánh diều, Kết nối tri thức, Chân trời sáng tạo...

4.5 (243)

799,000đ

99,000 VNĐ

Sách luyện 30 đề thi thử THPT năm 2025 mới

4.5 (243)

199,000đ

99.000 - 149.000 VNĐ

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau phuong-trinh-he-phuong-trinh.jsp Giải bài tập lớp 10 sách mới các môn học
  • Giải Tiếng Anh 10 Global Success
  • Giải Tiếng Anh 10 Friends Global
  • Giải sgk Tiếng Anh 10 iLearn Smart World
  • Giải sgk Tiếng Anh 10 Explore New Worlds
  • Lớp 10 - Kết nối tri thức
  • Soạn văn 10 (hay nhất) - KNTT
  • Soạn văn 10 (ngắn nhất) - KNTT
  • Soạn văn 10 (siêu ngắn) - KNTT
  • Giải sgk Toán 10 - KNTT
  • Giải sgk Vật lí 10 - KNTT
  • Giải sgk Hóa học 10 - KNTT
  • Giải sgk Sinh học 10 - KNTT
  • Giải sgk Địa lí 10 - KNTT
  • Giải sgk Lịch sử 10 - KNTT
  • Giải sgk Kinh tế và Pháp luật 10 - KNTT
  • Giải sgk Tin học 10 - KNTT
  • Giải sgk Công nghệ 10 - KNTT
  • Giải sgk Hoạt động trải nghiệm 10 - KNTT
  • Giải sgk Giáo dục quốc phòng 10 - KNTT
  • Lớp 10 - Chân trời sáng tạo
  • Soạn văn 10 (hay nhất) - CTST
  • Soạn văn 10 (ngắn nhất) - CTST
  • Soạn văn 10 (siêu ngắn) - CTST
  • Giải Toán 10 - CTST
  • Giải sgk Vật lí 10 - CTST
  • Giải sgk Hóa học 10 - CTST
  • Giải sgk Sinh học 10 - CTST
  • Giải sgk Địa lí 10 - CTST
  • Giải sgk Lịch sử 10 - CTST
  • Giải sgk Kinh tế và Pháp luật 10 - CTST
  • Giải sgk Hoạt động trải nghiệm 10 - CTST
  • Lớp 10 - Cánh diều
  • Soạn văn 10 (hay nhất) - Cánh diều
  • Soạn văn 10 (ngắn nhất) - Cánh diều
  • Soạn văn 10 (siêu ngắn) - Cánh diều
  • Giải sgk Toán 10 - Cánh diều
  • Giải sgk Vật lí 10 - Cánh diều
  • Giải sgk Hóa học 10 - Cánh diều
  • Giải sgk Sinh học 10 - Cánh diều
  • Giải sgk Địa lí 10 - Cánh diều
  • Giải sgk Lịch sử 10 - Cánh diều
  • Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
  • Giải sgk Tin học 10 - Cánh diều
  • Giải sgk Công nghệ 10 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 10 - Cánh diều

Từ khóa » Hệ Phương Trình Bậc Nhất Có Nghiệm Khi Nào