Cách Tìm Số Hạng đầu Tiên, Công Sai, Số Hạng ...

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

A. Phương pháp giải

+ Dãy số (un) là cấp số cộng khi và chỉ khi un+1 − un = d không phụ thuộc vào n và d là công sai.

+ Cho cấp số cộng có số hạng đầu là u1; công sai d. Khi đó; số hạng thứ n của cấp số cộng là: un = u1 + (n−1)d

+ Nếu biết số hạng thứ n và thứ m của dãy ta suy ra:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Giải hệ phương trình trên ta được u1 và công sai d.

B. Ví dụ minh họa

Ví dụ 1: Cho cấp số cộng (un) có u1 = 0,4 và công sai d = 1. Số hạng thứ 10 của cấp số cộng này là:

A. 1,6 B. 1,4 C. 10,4 D. 9,4

Hướng dẫn giải:

Số hạng tổng quát của cấp số cộng (un) là: un = u1 + (n − 1) d

=>số hạng thứ 10 của cấp số cộng là:

u10 = 0,4 +(10 − 1) . 1 = 9,4

Chọn D.

Ví dụ 2: Cho cấp số cộng (un) có u3 = −15 và u14 = 18. Tìm u1, d của cấp số cộng?

A. u1 = −21; d = 3 B. u1 = −20; d = 2

C. u1 = −21; d = −3 D. u1 = −20 ; d = −2

Hướng dẫn giải:

Ta có: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Từ giả thiết suy ra: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Chọn A.

Ví dụ 3: Cho cấp số cộng ( un) thỏa mãn : Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tìm số hạng thứ 10 của cấp số.

A. 39 B.27

C. 36 D.42

Hướng dẫn giải:

Theo giả thiết ta có:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

=> Số hạng thứ 10 của cấp số cộng là :

u10 = u1 + 9d = 3 + 9 . 4 = 39

Chọn A.

Ví dụ 4: Cho cấp số cộng (un) thỏa mãn điều kiện: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tìm công sai của cấp số cộng đã cho.

A.d = ±1 B.d = ±2 C .d = ±3 D. d = ±4

Hướng dẫn giải:

Theo đề bài ta có:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Từ (1) suy ra: u1 + 2d = 4 ⇔ u1 = 4 − 2d thế vào (2) ta được:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

* Với d = 3 => u1 = 4 − 6 = −2

* Với d = −3 => u1 = 4 + 6 = 10

Chọn C.

Ví dụ 5: Cho dãy số (un) với un = 7 − 2n. Khẳng định nào sau đây là sai?

A. 3 số hạng đầu của dãy u1 = 5; u2 = 3 và u3 = 1.

B. Số hạng thứ n + 1 là un+1 = 8 − 2n.

C. Là cấp số cộng có d = −2.

D. Số hạng thứ 4: u4 = −1.

Hướng dẫn giải:

* Ta có:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

=> đáp án A, D đúng.

*Số hạng thứ n+1 là: un + 1 = 7 − 2(n+1) = 5 − 2n

=> B sai.

* Xét hiệu: un+1 − un = (5−2n) − (7 − 2n)= −2

=> (un) là cấp số cộng với công sai d = −2.

=> C đúng.

Ví dụ 6: Cho một cấp số cộng có u1 = −1 và u5 = 11. Tìm công sai của cấp số cộng ?

A. d= 3 B. d= 5 C. d= 4 D. d= 2

Hướng dẫn giải:

Ta có: u5 = u1 + (5−1)d

=> 11 = − 1 + 4d ⇔ d= 3

Chọn A.

Ví dụ 7: Cho một cấp số cộng có u1 = 10; u7 = −8. Tìm d?

A. d= −2 B. d = −3 C. d = 2 D.d = 3

Hướng dẫn giải:

Ta có: u7 = u1 +(7−1)d

=> −8 = 10 + 6d

⇔ −18 = 6d nên d = −3

Chọn B.

Ví dụ 8: Cho cấp số cộng (un) thỏa mãn : Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Hỏi 301 là số hạng thứ bao nhiêu của cấp số cộng.

A.99 B.100

C.101 D.103

Hướng dẫn giải:

Theo giả thiết ta có:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Ta có : 301 = 1 + (n − 1) . 3 ⇔ 300 = 3(n-1)

⇔ n − 1 = 100 ⇔ n = 101

Vậy 301 là số hạng thứ 101 của cấp số cộng.

Chọn C.

Ví dụ 9: Cho cấp số cộng (un) thỏa mãn Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tìm số hạng thứ 6 của cấp số cộng ?

A.8 B.10

C. 6 D. 12

Hướng dẫn giải:

Theo giả thiết ta có :

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Từ (1) suy ra : u1 = 8 − 5d thay vào (2) ta được : Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Với Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Số hạng thứ 6 là: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Với d = 2 => u1 = −2

Số hạng thứ 6: u6 = −2 + 5 . 2 = 8

Chọn A.

Ví dụ 10: Cho cấp số cộng (un) có u1 = −2 và công sai d = 3. Hỏi có bao nhiêu số hạng của cấp số thỏa mãn un < 11.

A.3 B. 4 C.5 D.6

Hướng dẫn giải:

Cấp số cộng có u1 = −2 và công sai d = 3 nên số hạng tổng quát của cấp số cộng là:

un = u1 + (n − 1) . d = −2 + 3(n − 1) = 3n − 5

Để un < 11 thì 3n − 5 < 11

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Mà n nguyên dương nên n ∈ { 1,2,3,4,5}

Vậy có 5 số hạng của cấp số cộng thỏa mãn điều kiện

Chọn C.

Ví dụ 11: Viết ba số xen giữa các số 2 và 22 để được cấp số cộng có 5 số hạng. Tính tổng của ba số hạng xen giữa đó.

A. 36 B.28 C. 32 D.30

Hướng dẫn giải:

Khi viết ba số xen giữa hai số 2 và 22 để được cấp số cộng có 5 số hạng thì:

u1 = 2 và u5 = 22.

+ Lại có: u5 = u1 + (5 − 1) d nên 22 = 2 + 4d

⇔ 20 = 4d ⇔ d= 5

+Suy ra: u2 = u1 + d = 2 + 5= 7

u3 = u1 + 2d = 2 + 2 . 5 = 12

Và u4 = u1 + 3d = 2 + 3 . 5 = 17

=> u2 + u3 +u4 = 7 + 12 + 17 = 36

Chọn A.

Hỏi đáp VietJack

C. Bài tập trắc nghiệm

Câu 1: Cho (un) là cấp số cộng thỏa mãn : Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tìm số hạng thứ 20 của cấp số cộng.

A.67 B.75

C. 87 D. 91

Câu 2: Tìm ba số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng −9 và tổng các bình phương của chúng bằng 29.

A. 0 ; −3 ; −6 B. −2 ; −3 ; −4

C. −1; −2 ; −3 D. −3 ; −2 ; −1

Câu 3: Cho dãy số (un) là cấp số cộng thỏa mãn: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay Tính số hạng thứ 4 của cấp số cộng.

A.3 hoặc −1 B. 2 hoặc −2.

C.2 hoặc −3 D. −2 hoặc 1.

Câu 4: Cho 2 cấp số cộng : 5 ;8 ;11 ; .....và 3 ;7 ;11,.... Hỏi trong 100 số hạng đầu tiên của mỗi cấp số ; có bao nhiêu số hạng chung ?

A. 23 B. 24

C. 25 D. Tất cả sai

Câu 5: Cho cấp số cộng (un) có u2 + u3 = 20; u5 + u7 = −29 . Tìm u1 ; d?

A. u1 = 20; d = 7 B. u1 = 20;d = 7

C. u1 = 20,5; d = −7 D. u1 = −20,5; d= 7

Câu 6: Cho cấp số cộng (un) thỏa mãn Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tìm u1 ;d biết u1 > 0

A. u1 = 3; d= 1 B. u1 = 3; d = 2

C. u1 = 2; d = 3 D. u1 = 2; d = −3

Câu 7: Cho cấp số cộng (un) có công sai d > 0 và Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Hãy tìm số hạng tổng quát của cấp số cộng đó.

A. un = 3n − 9 B. un = 3n − 42

C. un = 3n − 67 D. un = 3n − 92

Câu 8: Tam giác ABC có ba góc A, B, C theo thứ tự đó lập thành cấp số cộng và C = 5A. Tính tổng số đo của góc có số đo lớn nhất và góc có số đo nhỏ nhất.

A. 1400 B. 1200

C. 1350 D. 1500

Câu 9: Cho (un) là cấp số cộng thỏa mãn : Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tính tổng của số hạng đầu tiên và công sai d ?

A. 3 B. 4

C. 5 D .6

Câu 10: Cho (un) là cấp số cộng, u1; u2; u3 là 3 số hạng của cấp số cộng thỏa mãn: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tìm tích 3 số đó?

A.15 B. 20

C. 21 D. 18

Câu 11: Cho cấp số cộng (un) có u4 = −20; u19 = 55 . Tìm u1, d của cấp số cộng?

A. u1 = −35; d = 5 B. u1 = −35; d = −5

C. u1 = 35; d = 5 D. u1 = 35; d = −5

Câu 12: Cho (un) là cấp số cộng thỏa mãn : Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tìm số hạng thứ 2 của cấp số cộng.

A.6 B.7

C .8 D. 9

Từ khóa » Cách Tính Cấp Số Cộng Và Công Sai