Cách Tìm Số Hạng đầu Tiên, Công Sai, Số Hạng ...
Có thể bạn quan tâm
Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay
A. Phương pháp giải
+ Dãy số (un) là cấp số cộng khi và chỉ khi un+1 − un = d không phụ thuộc vào n và d là công sai.
+ Cho cấp số cộng có số hạng đầu là u1; công sai d. Khi đó; số hạng thứ n của cấp số cộng là: un = u1 + (n−1)d
+ Nếu biết số hạng thứ n và thứ m của dãy ta suy ra:
Giải hệ phương trình trên ta được u1 và công sai d.
B. Ví dụ minh họa
Ví dụ 1: Cho cấp số cộng (un) có u1 = 0,4 và công sai d = 1. Số hạng thứ 10 của cấp số cộng này là:
A. 1,6 B. 1,4 C. 10,4 D. 9,4
Hướng dẫn giải:
Số hạng tổng quát của cấp số cộng (un) là: un = u1 + (n − 1) d
=>số hạng thứ 10 của cấp số cộng là:
u10 = 0,4 +(10 − 1) . 1 = 9,4
Chọn D.
Ví dụ 2: Cho cấp số cộng (un) có u3 = −15 và u14 = 18. Tìm u1, d của cấp số cộng?
A. u1 = −21; d = 3 B. u1 = −20; d = 2
C. u1 = −21; d = −3 D. u1 = −20 ; d = −2
Hướng dẫn giải:
Ta có:
Từ giả thiết suy ra:
Chọn A.
Ví dụ 3: Cho cấp số cộng ( un) thỏa mãn : . Tìm số hạng thứ 10 của cấp số.
A. 39 B.27
C. 36 D.42
Hướng dẫn giải:
Theo giả thiết ta có:
=> Số hạng thứ 10 của cấp số cộng là :
u10 = u1 + 9d = 3 + 9 . 4 = 39
Chọn A.
Ví dụ 4: Cho cấp số cộng (un) thỏa mãn điều kiện: . Tìm công sai của cấp số cộng đã cho.
A.d = ±1 B.d = ±2 C .d = ±3 D. d = ±4
Hướng dẫn giải:
Theo đề bài ta có:
Từ (1) suy ra: u1 + 2d = 4 ⇔ u1 = 4 − 2d thế vào (2) ta được:
* Với d = 3 => u1 = 4 − 6 = −2
* Với d = −3 => u1 = 4 + 6 = 10
Chọn C.
Ví dụ 5: Cho dãy số (un) với un = 7 − 2n. Khẳng định nào sau đây là sai?
A. 3 số hạng đầu của dãy u1 = 5; u2 = 3 và u3 = 1.
B. Số hạng thứ n + 1 là un+1 = 8 − 2n.
C. Là cấp số cộng có d = −2.
D. Số hạng thứ 4: u4 = −1.
Hướng dẫn giải:
* Ta có:
=> đáp án A, D đúng.
*Số hạng thứ n+1 là: un + 1 = 7 − 2(n+1) = 5 − 2n
=> B sai.
* Xét hiệu: un+1 − un = (5−2n) − (7 − 2n)= −2
=> (un) là cấp số cộng với công sai d = −2.
=> C đúng.
Ví dụ 6: Cho một cấp số cộng có u1 = −1 và u5 = 11. Tìm công sai của cấp số cộng ?
A. d= 3 B. d= 5 C. d= 4 D. d= 2
Hướng dẫn giải:
Ta có: u5 = u1 + (5−1)d
=> 11 = − 1 + 4d ⇔ d= 3
Chọn A.
Ví dụ 7: Cho một cấp số cộng có u1 = 10; u7 = −8. Tìm d?
A. d= −2 B. d = −3 C. d = 2 D.d = 3
Hướng dẫn giải:
Ta có: u7 = u1 +(7−1)d
=> −8 = 10 + 6d
⇔ −18 = 6d nên d = −3
Chọn B.
Ví dụ 8: Cho cấp số cộng (un) thỏa mãn : . Hỏi 301 là số hạng thứ bao nhiêu của cấp số cộng.
A.99 B.100
C.101 D.103
Hướng dẫn giải:
Theo giả thiết ta có:
Ta có : 301 = 1 + (n − 1) . 3 ⇔ 300 = 3(n-1)
⇔ n − 1 = 100 ⇔ n = 101
Vậy 301 là số hạng thứ 101 của cấp số cộng.
Chọn C.
Ví dụ 9: Cho cấp số cộng (un) thỏa mãn . Tìm số hạng thứ 6 của cấp số cộng ?
A.8 B.10
C. 6 D. 12
Hướng dẫn giải:
Theo giả thiết ta có :
Từ (1) suy ra : u1 = 8 − 5d thay vào (2) ta được :
Với
Số hạng thứ 6 là:
Với d = 2 => u1 = −2
Số hạng thứ 6: u6 = −2 + 5 . 2 = 8
Chọn A.
Ví dụ 10: Cho cấp số cộng (un) có u1 = −2 và công sai d = 3. Hỏi có bao nhiêu số hạng của cấp số thỏa mãn un < 11.
A.3 B. 4 C.5 D.6
Hướng dẫn giải:
Cấp số cộng có u1 = −2 và công sai d = 3 nên số hạng tổng quát của cấp số cộng là:
un = u1 + (n − 1) . d = −2 + 3(n − 1) = 3n − 5
Để un < 11 thì 3n − 5 < 11
Mà n nguyên dương nên n ∈ { 1,2,3,4,5}
Vậy có 5 số hạng của cấp số cộng thỏa mãn điều kiện
Chọn C.
Ví dụ 11: Viết ba số xen giữa các số 2 và 22 để được cấp số cộng có 5 số hạng. Tính tổng của ba số hạng xen giữa đó.
A. 36 B.28 C. 32 D.30
Hướng dẫn giải:
Khi viết ba số xen giữa hai số 2 và 22 để được cấp số cộng có 5 số hạng thì:
u1 = 2 và u5 = 22.
+ Lại có: u5 = u1 + (5 − 1) d nên 22 = 2 + 4d
⇔ 20 = 4d ⇔ d= 5
+Suy ra: u2 = u1 + d = 2 + 5= 7
u3 = u1 + 2d = 2 + 2 . 5 = 12
Và u4 = u1 + 3d = 2 + 3 . 5 = 17
=> u2 + u3 +u4 = 7 + 12 + 17 = 36
Chọn A.
C. Bài tập trắc nghiệm
Câu 1: Cho (un) là cấp số cộng thỏa mãn : . Tìm số hạng thứ 20 của cấp số cộng.
A.67 B.75
C. 87 D. 91
Câu 2: Tìm ba số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng −9 và tổng các bình phương của chúng bằng 29.
A. 0 ; −3 ; −6 B. −2 ; −3 ; −4
C. −1; −2 ; −3 D. −3 ; −2 ; −1
Câu 3: Cho dãy số (un) là cấp số cộng thỏa mãn: Tính số hạng thứ 4 của cấp số cộng.
A.3 hoặc −1 B. 2 hoặc −2.
C.2 hoặc −3 D. −2 hoặc 1.
Câu 4: Cho 2 cấp số cộng : 5 ;8 ;11 ; .....và 3 ;7 ;11,.... Hỏi trong 100 số hạng đầu tiên của mỗi cấp số ; có bao nhiêu số hạng chung ?
A. 23 B. 24
C. 25 D. Tất cả sai
Câu 5: Cho cấp số cộng (un) có u2 + u3 = 20; u5 + u7 = −29 . Tìm u1 ; d?
A. u1 = 20; d = 7 B. u1 = 20;d = 7
C. u1 = 20,5; d = −7 D. u1 = −20,5; d= 7
Câu 6: Cho cấp số cộng (un) thỏa mãn . Tìm u1 ;d biết u1 > 0
A. u1 = 3; d= 1 B. u1 = 3; d = 2
C. u1 = 2; d = 3 D. u1 = 2; d = −3
Câu 7: Cho cấp số cộng (un) có công sai d > 0 và . Hãy tìm số hạng tổng quát của cấp số cộng đó.
A. un = 3n − 9 B. un = 3n − 42
C. un = 3n − 67 D. un = 3n − 92
Câu 8: Tam giác ABC có ba góc A, B, C theo thứ tự đó lập thành cấp số cộng và C = 5A. Tính tổng số đo của góc có số đo lớn nhất và góc có số đo nhỏ nhất.
A. 1400 B. 1200
C. 1350 D. 1500
Câu 9: Cho (un) là cấp số cộng thỏa mãn : . Tính tổng của số hạng đầu tiên và công sai d ?
A. 3 B. 4
C. 5 D .6
Câu 10: Cho (un) là cấp số cộng, u1; u2; u3 là 3 số hạng của cấp số cộng thỏa mãn: . Tìm tích 3 số đó?
A.15 B. 20
C. 21 D. 18
Câu 11: Cho cấp số cộng (un) có u4 = −20; u19 = 55 . Tìm u1, d của cấp số cộng?
A. u1 = −35; d = 5 B. u1 = −35; d = −5
C. u1 = 35; d = 5 D. u1 = 35; d = −5
Câu 12: Cho (un) là cấp số cộng thỏa mãn : . Tìm số hạng thứ 2 của cấp số cộng.
A.6 B.7
C .8 D. 9
Từ khóa » Tính U1 Và D Của Cấp Số Cộng
-
Cách Tìm Số Hạng đầu Tiên, Công Sai, Số Hạng Thứ K Của Cấp Số Cộng ...
-
Công Thức Cấp Số Cộng - Trung Tâm Gia Sư Tâm Tài Đức
-
Cách Tính Công Sai Cấp Số Cộng - TopLoigiai
-
Giải Toán 11 Bài 3. Cấp Số Cộng
-
Tìm Số Hạng đầu Và Công Sai Của Cấp Số Cộng
-
Tìm Số Hạng đầu U1 Và Công Sai D Của Các Cấp Số Cộng (Un)
-
Xác định Số Hạng đầu U1 Và Công Sai D Của Cấp Số Cộng (un) Có Và
-
Sử Dụng định Nghĩa Cấp Số Cộng
-
Cho Cấp Số Cộng Un Có U1=4 Và D=-5 . Tính Tổng 100 Số Hạng đầu ...
-
Tìm Số Hạng U1 Và Công Sai D Của Các Cấp Số Cộng (u.n) Biết: 5u1 + ...
-
Tổng Hợp Các Công Thức Cấp Số Cộng Và Cấp Số Nhân & Bài Tập
-
Cho Cấp Số Cộng (un) Có U1 = -2 Và Công Sai D = 5 Số 198 Là Số Hạng ...
-
Giáo án Môn Toán Lớp 11 - Bài 3: Cấp Số Cộng
-
Công Thức Cấp Số Cộng - Công Thức Cấp Số Nhân, Ví Dụ Minh Họa