Cách Tìm Tập Xác định Của Hàm Số Lượng Giác Cực Hay - Toán Lớp 11

Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 ❮ Bài trước Bài sau ❯

Cách tìm tập xác định của hàm số lượng giác cực hay

Với Cách tìm tập xác định của hàm số lượng giác cực hay Toán lớp 11 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập tìm tập xác định của hàm số lượng giác từ đó đạt điểm cao trong bài thi môn Toán lớp 11.

Cách tìm tập xác định của hàm số lượng giác cực hay

A. Phương pháp giải

+ Hàm số y = 1/f(x) xác định khi f(x) ≠ 0 .

+ Hàm số y= √(f(x)) xác định khi f(x) ≥ 0.

+ Hàm số y = 1/√(f(x)) xác định khi f(x)> 0

+ Hàm số y= tan [f(x)] xác định khi cos[f(x)] ≠ 0 .

+ Hàm số y = cot [f(x)] xác định khi sin[ f(x)] ≠ 0

+ Hàm số y= tan[ f(x)]+cot⁡[g(x)] xác định khi cos⁡[f(x)] ≠ 0;sin⁡[ g(x)] ≠ 0

* Chú ý:

sinx ≠ 0 ⇔ x ≠ k.π

cosx ≠ 0 ⇔ x ≠ π/2+kπ với k nguyên

sinx ≠ 1 ⇔ x ≠ π/2+k2π và sinx ≠ -1 ⇔ x ≠ -π/2+k2π

cosx ≠ 1 ⇔ x ≠ k2π và cosx ≠ -1 ⇔ x ≠ π+k2π

Hay lắm đó

B. Ví dụ minh họa

Ví dụ 1. Tìm tập xác định D của hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

A.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

B.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Lời giải:

Chọn C.

Hàm số xác định khi và chỉ khi Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Vậy tập xác định Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Ví dụ 2. Tìm tập xác định D của hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

A.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

B.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Lời giải:

Chọn D

Hàm số xác định khi và chỉ khi Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Vậy tập xác định Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Ví dụ 3. Tập xác định của hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 . là

A. Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

B. Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

D. Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Lời giải:

Chọn B

Ta có Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Vậy hàm số đã cho xác định với mọi x∈R

Ví dụ 4. Hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 chỉ xác định khi:

A.x ≠ π/2 +kπ, k∈Z .

B.x=0 .

C.x≠ kπ,k∈Z .

D.x= k2π,k∈Z .

Lời giải:

Chọn D

Hàm số đã cho xác định khi cos x - 1 ≥0, mà cos x - 1 ≤0,∀x∈R

Do vậy để hàm số xác định thì cosx=1, x= k2π,k∈Z

Ví dụ 5. Tập xác định của hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 là:

A. R

B.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Lời giải:

Chọn C

Hàm số xác định khi cos⁡(x/2-π/4) ≠ 0

⇔ x/2-π/4 ≠ π/2+kπ ⇔ x/2 ≠ 3π/4+kπ

⇔ x ≠ 3π/2+k2π,k ∈ Z

Ví dụ 6: Tập xác định của hàm số D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 . là:

A. R\{π/6+kπ/2,k ∈ Z}.

B.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Lời giải:

Chọn A

Hàm số xác định khi sin⁡(2x-π/3) ≠ 0

⇔2x-π/3 ≠ kπ ⇔ 2x ≠ π/3+ kπ

⇔ x ≠ π/6+kπ/2,k ∈ Z

Hay lắm đó

Ví dụ 7. Xét hai mệnh đề sau:

(I): Các hàm số y= sin x và y= cosx có chung tập xác định là R

(II): Các hàm số y= tanx và y= cotx có chung tập xác định là

.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

A. Chỉ (I) đúng. B. Chỉ (II) đúng. C. Cả hai đều sai. D. Cả hai đều đúng.

Lời giải:

Chọn A

+ Hai hàm số y= sinx và y= cosx có chung tập xác định là D = R

⇒ (I) đúng

+ Hàm số y= tanx tập xác định là Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Và hàm số y= cot x tập xác định là Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

suy ra (II) sai

Ví dụ 8: Tập xác định của hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 là:

A.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

B.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Lời giải:

Chọn A

ĐK:Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Tập xác định .

Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Ví dụ 9: Tập xác định của hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 . là:

A.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

B.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Lời giải:

Chọn A

Cách 1: Hàm số đã cho xác định khi Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Cách 2: Sử dụng máy tính cầm tay tính giá trị của hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

ta thấy hàm số đều không xác định, từ đây ta chọn A

Ví dụ 10: Tìm tập xác định D của hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

A.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

B=R

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Lời giải:

Chọn B

Ta có Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Vậy tập xác định D=R .

Ví dụ 11: Tìm tập xác định của hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

A.Ta có Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

B .D =

C. Ta có Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

D.

Ta có Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Lời giải:

Chọn C

Ta có Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Vậy hàm số đã cho xác định khi Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Ví dụ 12: Tìm tập xác định của hàm số:Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

A.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

B.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Lời giải:

Chọn C

Hàm số đã cho xác định khi Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Mà cos18x ≥ -1 ⇒ 19cos18 x ≥ -19

⇒ 20+ 19cos18x ≥ 20-19= 1 > 0

Vậy 20+19cos18x > 0, ∀x ∈ R nên hàm số đã cho xác định khi và chỉ khi:

Vậy hàm số đã cho xác định khi x ≠ π/2+k2π,k ∈ Z

Ví dụ 13: Hàm số nào sau đây có tập xác định là R?

A.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

B.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Lời giải:

Chọn D

Ta xét các phương án:

+ Với A thì hàm số xác định khi

+Với B thì hàm số xác định khi

+ Với C thì hàm số xác định khi tan2x xác định ≤ ⇒ cos2x ≠ 0

Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

+ Với D thì cos 4x ≥ -1 và sin2x ≥ -1 với ∀ x

⇒ cos4x + 5 > 0 và sin2x + 3 > 0với mọi x

Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Ví dụ 14: Hàm số nào sau đây có tập xác định khác với các hàm số còn lại?

A. y= tanx

B.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Lời giải:

Chọn C

Với A thì hàm số xác định khi cosx khác 0

Với B thì hàm số xác định khi cosx khác 0

Với C thì hàm số xác định khi Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Từ đây ta chọn C do khác với A và B

Ví dụ 15: Hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 có tập xác định là:

A.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

B.D=R .

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Lời giải:

Chọn B

Hàm số đã cho xác định khi:

Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 đúng với mọi x

Do đó hàm số đã cho có tập xác định: D= R

Hay lắm đó

Ví dụ 16: Chọn khẳng định đúng:

A. Hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 có tập xác định là các đoạn Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

B. Hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 có tập xác định là các đoạn Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

C. Hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 có tập xác định là các đoạn Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

D. Hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 có tập xác định là các đoạn Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Lời giải:

Chọn C

Ta xét các phương án:

+ Với A thì hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 xác định khi Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Vậy A sai.

+ Với B thì hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 xác định khi Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Vậy B sai.

+ Với C thì hàm số xác định khi Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 xác định khi Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Vậy C đúng.

Ví dụ 17: Xét hai mệnh đề:

(I): Các hàm số y= 1/sinx và y= cotx có chung tập xác định là Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

(II):Các hàm số y= 1/cosx và y= tanx có chung tập xác định là Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

A. Chỉ (I) đúng.

B. Chỉ (II) đúng.

C. Cả hai đều sai.

D.Cả hai đều đúng.

Lời giải:

Chọn D

+ Ta thấy cả hai hàm số y= 1/sinx và y = cot x đều xác định khi sinx ≠ 0 .

+ Tương tự thì hai hàm số ở mệnh đề II đều xác định khi cosx ≠ 0 .

⇒ Cả hai mệnh đề đã cho là đúng .

Ví dụ 18: Cho hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 . Tập xác định của hàm số là:

A.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

B.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Lời giải:

Chọn C

Hàm số xác định khi và chỉ khi: Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Ví dụ 19: Cho hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 . Tập xác định:

A.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

B.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Lời giải:

Chọn D

Hàm số xác định khi Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Ví dụ 20: Cho hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .Hãy chỉ ra khoảng mà hàm số không xác định k∈Z

A.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

B.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Lời giải:

Chọn B

Hàm số đã cho xác định khi Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Khoảng Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

nên hàm số không xác định trong khoảng này

Ví dụ 21: Tập xác định của hàm số y= cosx/(cos3x.cos⁡( x- π/3).cos⁡( π/3+x) ) là:

A.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

B.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Lời giải:

Chọn A

Hàm số đã cho xác định khi và chỉ khi:

cos⁡3x.cos⁡( x- π/3).cos⁡( π/3+x) ≠ 0

Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Ví dụ 22: Tập xác định của hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 . là:

A.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

B.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Lời giải:

Chọn B

Hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 . xác định khiCách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Vậy tập xác định của hàm số là: D=R\{kπ/2;k ∈ Z}.

Ví dụ 23: Tập xác định của hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 . là:

A.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

B.D=R.

C.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

D.Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Lời giải:

Chọn A

Ta có -1 ≤ cos2x ≤ 1 nên -3 ≤ -3cos⁡2x ≤ 3

⇒ 2 ≤ 5-3cos2x ≤ 8. Vậy 5-3cos2x > 0 với mọi x. .

Mặt khác Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Hàm số đã cho xác định

Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Tập xác định Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Hay lắm đó

C. Bài tập vận dụng

Câu 1:Tìm tập xác định của hàm số y=sin(1/x)+2x

A. D=[-2;2]

B. D=[-1;1]\{0}

C. D=R

D. D=R\{0}

Hiển thị lời giải

Chọn D

Hàm số đã cho xác định khi six(1/x) xác định < ⇒ x≠ 0.

Câu 2:Tìm tập xác định của hàm số y=(1+cosx)/sinx

A. D=R\{kπ|k ∈ Z} .

B. D=R\{π/2+kπ|k ∈ Z}.

C. D=R\{π+k2π|k ∈ Z} .

D. D=R\{k2π|k ∈ Z} .

Hiển thị lời giải

Chọn A

Hàm số đã cho xác định khi: sinx ≠ 0 hay x ≠ kπ; k ∈ Z.

Vậy tập xác định của hàm số là D= R\{kπ ;k ∈ Z}

Câu 3:Tập xác định của hàm số y= tan(2x+π/3) là

A. D. D=R\{π/2+kπ|k ∈ Z} .

B. D. D=R\{π/6+kπ|k ∈ Z} .

C. D. D=R\{π/12+kπ|k ∈ Z} .

D. D. D=R\{π/12+kπ/2|k ∈ Z} .

Hiển thị lời giải

Chọn D

Hàm số đã cho xác định khi

cos⁡(2x+π/3) ≠ 0 ⇔ 2x+π/3 ≠ π/2+kπ ⇒ 2x ≠ π/6+kπ

⇔ x ≠ π/12+kπ/2,k ∈ Z ⇒ D=R\{π/12+kπ/2,k ∈ Z}.

Câu 4:Xét bốn mệnh đề sau

(1) Hàm số y= sinx có tập xác định là R

(2) Hàm số y= cosx có tập xác định là R

(3) Hàm số y= tan x có tập xác định là R\{kπ|k ∈ Z}

(4) Hàm số y= cotx có tập xác định là R\{kπ/2|k ∈ Z}

Số mệnh đề đúng là

A. 1. B. 2. C. 3. D. 4.

Hiển thị lời giải

Chọn B

Mệnh đề (1) và ( 2) là đúng

Mệnh đề ( 3) và (4) là sai

Sửa lại cho đúng như sau

( 3) : Hàm số y= tanx có TXĐ là R\{π/2+kπ|k ∈ Z}

(4) Hàm số y= cot x có TXĐ là R\{kπ|k ∈ Z} .

Câu 5:Tập xác định của hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 . là

A. D=[0;2π]

B. D=[0;+∞]

C. D=R

D. D=R\{0}

Hiển thị lời giải

Chọn B

Hàm số đã cho xác định khi x≥0 .

Câu 6:Tập xác định của hàm số y=(2sinx+1)/(1-cosx) là:

A. x ≠ kπ/2 .

B. x ≠ kπ .

C. x ≠ π/2+kπ .

D. x ≠ π/2+k2π .

Hiển thị lời giải

Chọn A

Hàm số xác định khi: 1-cosx≠ 0 ⇒ x≠ k2π .

Câu 7: Tập xác định của hàm số y= tan 2x là

A. x ≠ -π/4+kπ/2 .

B. x ≠ π/2+kπ .

C. x ≠ π/4+kπ/2 .

D. x ≠ π/4+kπ .

Hiển thị lời giải

Chọn C

Điều kiện xác định của hàm số đã cho là:

cos2x≠ 0 ⇒ 2x≠ π/2+kπ ⇒ x ≠ π/4+kπ/2

Câu 8:Tập xác định của hàm số y=(1-sinx)/(sinx+1) là

A.x ≠ π/2+k2π .

B.x ≠ k2π .

C.x ≠ 3π/2+k2π .

D.x ≠ π+k2π .

Hiển thị lời giải

Chọn C

Điều kiện xác định của hàm số đã cho là: sinx ≠ 1 ⇒ x ≠ 3π/2+k2π .

Câu 9:Tập xác định của hàm số y=(1-3cosx)/sinx là

A.x ≠ π/2+kπ .

B.x ≠ k2π .

C.x ≠ kπ/2 .

D.x ≠ kπ .

Hiển thị lời giải

Chọn D

Điều kiện xác định của hàm số đã cho là: sinx≠ 0 ⇒ x ≠ kπ

Câu 10:Tập xác định của hàm số y=tan(2x-π/3) là

A.x ≠ π/6+kπ/2 .

B.x ≠ 5π/12+kπ .

C.x ≠ π/2+kπ .

D.x ≠ 5π/12+kπ/2 .

Hiển thị lời giải

Chọn D

Điều kiện xác định của hàm số đã cho là:

cos(2x-π/3) ≠ 0 ⇒ 2x-π/3 ≠ π/2+kπ ⇒ 2x ≠ 5π/6+kπ ⇒ x ≠ 5π/12+kπ/2 .

Hay lắm đó

Câu 11:Tìm tập xác định D của hàm số y=1/(sin(x-π/2))

A. D= R\{k π/2;k ∈ Z}.

B. D=R {kπ;k ∈ Z}.

C. D= R\{(1+2k) π/2;k ∈ Z}.

D. D=R {(1+2k)π;k ∈ Z}.

Hiển thị lời giải

Chọn C

Hàm số xác định khi và chỉ khi:

sin(x-π/2) ≠ 0 ⇔ x-π/2 ≠ kπ ⇔ x ≠ π/2+kπ, k ∈ Z

Vậy tập xác định D= R\{(1+2k)π/2;k ∈ Z}. .

Câu 12:Tìm tập xác định D của hàm số y=1/(sinx-cosx)

A. D=R .

B. D= R\{(-π)/4+k2π; k ∈ Z}.

C. D= R\{π/4+k2π; k ∈ Z}.

D. D= R\{π/4+kπ; k ∈ Z}

Hiển thị lời giải

Chọn D

Hàm số xác định khi và chỉ khi:

sinx-cosx ≠ 0 ⇔ tanx ≠ 1 ⇔ x ≠ π/4+kπ,k ∈ Z

Vậy tập xác định D= R\{π/4+kπ; k ∈ Z}.

Câu 13:Tìm tập xác định D của hàm số y= cot(2x- π/4)+sin2x.

A. R\{π/4+kπ; k ∈ Z}.

B. D= R

C. R\{π/8+kπ; k ∈ Z}.

D. Đáp án khác

Hiển thị lời giải

Chọn D

Hàm số xác định khi và chỉ khi:

sin(2x-π/4) ≠ 0 ⇔ 2x-π/4 ≠ kπ ⇔ x ≠ π/8+k π/2, k ∈ Z

Vậy tập xác định D=R\{π/8+kπ/2,k ∈ Z}.

Câu 14:Tìm tập xác định D của hàm số y= √(sinx+2)

A.D=R .

B.D=[-2;+∞] .

C.D=[0;2π] .

D.D=Ø .

Hiển thị lời giải

Chọn A

Ta có -1 ≤ sinx ≤ 1 ⇒ 1 ≤ sinx+2 ≤ 3, ∀x ∈ R.

Do đó luôn tồn tại √(sinx+2) .

Vậy tập xác định D=R .

Câu 15:Tìm tập xác định D của hàm số y= √(sinx-2) .

A. D=R .

B. D=R\{kπ;k ∈ Z} .

C. D=[-1;1] .

D. D=Ø .

Hiển thị lời giải

Chọn D

Ta có -1 ≤ sinx ≤ 1 ⇒ -3 ≤ sinx-2 ≤ -1, ∀x ∈ R. .

⇒ sinx- 2 < 0 với mọi x.

Do đó không tồn tại √(sinx-2), ∀x ∈ R .

Vậy tập xác định D=∅.

Câu 16:Tìm tập xác định D của hàm số y=1/ √(1-sinx) .

A.D=R\{kπ;k ∈ Z}

B.D=R\{π/2+kπ;k ∈ Z}

C.D=R\{π/2+k2π;k ∈ Z}

D.D=∅

Hiển thị lời giải

Chọn C

Hàm số xác định khi và chỉ khi 1-sinx > 0 ⇒ sinx < 1 (*).

Mà -1 ≤ sinx ≤ 1 ⇒ (*)< ⇒ sinx≠ 1 ⇒ x≠ π/2+kπ;k ∈ Z.

Vậy tập xác định D=R\{π/2+k2π;k ∈ Z} .

Câu 17:Tập xác định của hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

A.D=R\{-π/6+k2π;k ∈ Z} .

B.D=R\{7π/6+kπ,k2π;k ∈ Z} .

C.D=R\{k2π;k ∈ Z} .

D. Đáp án khác

Hiển thị lời giải

Chọn D

Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 .

Tập xác định của hàm số là R\{-π/6+kπ,k2π;k ∈ Z} .

Câu 18:Tập xác định của hàm số Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 là:

A.D=R\{±π/4+kπ,π/2+kπ;k ∈ Z} .

B.D=R\{kπ/2;k ∈ Z} .

C.D=R\{π/4+kπ;k ∈ Z} .

D.D=R\{±π/4+kπ;k ∈ Z} .

Hiển thị lời giải

Chọn A

Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Vậy D=R\{±π/4+kπ;k ∈ Z} .

Câu 19: Hàm sốCách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 có tập xác định là:

A.D=R\{π/6+kπ/2,kπ;k ∈ Z} .

B.D=R\{π/12+kπ,kπ/2;k ∈ Z} .

C.D=R\{π/12+kπ,kπ;k ∈ Z} .

D.D=R\{π/12+kπ/2,kπ;k ∈ Z} .

Hiển thị lời giải

Chọn D

Hàm số xác định khi

Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Vậy tập xác định của hàm số là D=R\{π/12+kπ/2,kπ;k ∈ Z} .

Câu 20:Tập xác định của hàm số y=cotx/(sinx-1) là:

A.D=R\{π/3+k2π;k ∈ Z} .

B.D=R\{kπ/2;k ∈ Z} .

C.D=R\{π/2+k2π,kπ;k ∈ Z} .

D.D=R\{π/2+k2π;k ∈ Z} .

Hiển thị lời giải

Chọn C

Hàm số đã cho xác định khi

+ cot x xác định ⇒ sinx ≠ 0 và sinx-1 ≠ 0

Vậy hàm số xác định khi và chỉ khi:

Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11 . là:

Hay lắm đó

Câu 21:Tập xác định của hàm số y=2016tan20172x là

A.D=R\{π/2+kπ;k ∈ Z}

B.D=R\{kπ/2;k ∈ Z}

C.D=R

D.D=R\{π/4+kπ/2;k ∈ Z}

Hiển thị lời giải

Chọn D

Ta có y= 2016tan20172x = 2016.(tan2x)2017

2017 là một số nguyên dương, do vậy hàm số đã cho xác định khi tan2x xác định

⇒ cos2x ≠ 0 < ⇒ x≠ π/4+kπ/2;k ∈ Z.

Câu 22:Để tìm tập xác định của hàm số y= tanx+ cosx, một học sinh đã giải theo các bước sau:

Bước 1: Điều kiện để hàm số có nghĩa là sinx≠ 0 và cosx≠ 0 .

Bước 2: ⇒ x≠ π/2+kπ và x≠ kπ ;k ∈ Z

Bước 3: Vậy tập xác định của hàm số đã cho là D=R\{π/2+kπ,kπ;k ∈ Z} .

Bài giải của bạn đó đúng chưa? Nếu sai, thì sai bắt đầu ở bước nào?

A. Bài giải đúng.

B. Sai từ bước 1.

C. Sai từ bước 2.

D. Sai từ bước 3.

Hiển thị lời giải

Chọn B

Nhận thấy hàm số đã cho xác định khi tanx xác định (do cosx xác định với mọi x thuộc R ).

Do vậy hàm số xác định khi cosx≠ 0 ⇒ x≠ π/2+kπ, k ∈ Z

Câu 23:Tập xác định D của hàm sốCách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

A.D=R\{π/2+k2π;k ∈ Z}

B.D=R\{π/2+kπ;k ∈ Z}

C.D=R\{π/2+kπ/2;k ∈ Z}

D.D=R\{kπ/2;k ∈ Z}

Hiển thị lời giải

Chọn B

Hàm số đã cho xác định khi .

Cách tìm tập xác định của hàm số lượng giác cực hay - Toán lớp 11

Câu 24:Tìm tập xác định của hàm số y=1/(sin2x-cos2x)

A.D=R\{π/2+kπ;k ∈ Z}

B.D=R\{kπ/2;k ∈ Z}

C.D=R

D.D=R\{π/4+kπ/2;k ∈ Z}

Hiển thị lời giải

Chọn D

Hàm số đã cho xác định khi và chỉ khi:

sin2x-cos2x ≠ 0 ⇒ cos2x≠ 0 ⇒ x≠ π/4+kπ/2;k ∈ Z

Câu 25:Tìm tập xác định của hàm số y=2017tan2x/sin2x-cos2x

A.D=R\{π/2+kπ;k ∈ Z}

B.D=R\{π/2;k ∈ Z}

C.D=R

D.D=R\{π/4+kπ/2;k ∈ Z}

Hiển thị lời giải

Chọn D

Hàm số đã cho xác định khi và chỉ khi:

sin2x-cos2x ≠ 0 và cos2x≠ 0 < ⇒ cos2x≠ 0 ⇒ x≠ π/4+kπ/2;k ∈ Z

Câu 26:Tập xác định của hàm số y= sinx/(sinx+cosx)

A.D=R\{-π/4+kπ;k ∈ Z}

B.D=R\{kπ/4;k ∈ Z}

C.D=R\{π/4+kπ,π/2+kπ;k ∈ Z}

D.D=R\{π/4+kπ;k ∈ Z}

Hiển thị lời giải

Chọn A

Hàm số đã cho xác định khi sinx+cosx ≠ 0 ⇒ √2sin(x+π/4)≠ 0 ⇒ x≠ -π/4+kπ;k ∈ Z

Vậy TXĐ D=R\{π/4+kπ;k ∈ Z} .

Câu 27:Tập xác định của hàm số y= tanx/(cosx-1)

A.x≠ k2π

B.x=π/3+k2π

C.x≠ π/2+kπ và x≠ k2π

D.x≠ π/2+kπ và x≠ π/3+kπ

Hiển thị lời giải

Chọn C

Hàm số đã cho xác định khi cosx ≠ 0 và cosx ≠ 1 ⇒ x≠ π/2+kπ và x≠ k2π

Từ khóa » Tìm Tập Xác định Của Hàm Số Y = Sinx + 1 Trên Sin X Trừ 1