Cách Tìm Tập Xác Định Và Điều Kiện Hàm Số Mũ - Marathon
Có thể bạn quan tâm
Hàm số mũ và hàm logarit là những kiến thức Toán thường gặp trong chương trình cấp 3. Để giải được các bài toán này, các em phải nắm vững các công thức tính từng loại hàm số mũ cũng như thực hành nhiều với các dạng bài khác nhau. Bài viết sau của Marathon Education sẽ tổng hợp và chia sẻ đến các em lý thuyết và cách giải bài tập liên quan đến tập xác định và điều kiện hàm số mũ.
Hàm số mũ là gì?
Hàm số mũ là hàm số có dạng: y = ax với a là số dương khác 1.
Tính chất của hàm số mũ
- Đạo hàm của hàm số: ∀ x ∈ R, y’ = ax lna
- Chiều biến thiên của hàm số:
- Hàm số luôn đồng biến nếu a > 1
- Hàm số luôn nghịch biến nếu 0 < a < 1
- Đường tiệm cận: Hàm số mũ y = ax nhận trục Ox làm tiệm cận ngang.
- Vị trí đồ thị: Nằm hoàn toàn về phía trên của trục hoành, y = ax > 0 ∀ x. Hàm số luôn cắt trục Oy tại điểm (0;1) và đi qua điểm (1;a).
Tập xác định và điều kiện hàm số mũ
Hàm số mũ y = ax với a > 0, a ≠ 1 có tập xác định là R.
Đối với các bài tìm tập xác định dạng phức tạp y = au(x), ta chỉ cần tìm điều kiện hàm số mũ để u(x) xác định.
>>> Xem thêm: Bất Phương Trình Mũ Và Bất Phương Trình Lôgarit – Lý Thuyết Toán 12
Lý Thuyết Quy Tắc Đếm - Toán 11 Và Bài Tập Vận Dụng ĐĂNG KÝ NGAYBài tập minh họa và lời giải
Để hiểu và nắm vững phương pháp giải bài toán liên quan đến hàm số mũ, các em hãy theo dõi những ví dụ về cách tìm tập xác định và điều kiện của hàm số mũ dưới đây:
Ví dụ 1: Tìm tập xác định của hàm số sau:
y=( x2 – 1)-8
Bài giải:
Hàm số xác định khi và chỉ khi x2 – 1 khác 0.
\begin{aligned} &x^2-1\not=0\\ &\Leftrightarrow\ x^2≠ 1\\ &\Leftrightarrow\ x ≠ ±1 \end{aligned}Từ đó, ta suy ra tập xác định của hàm số là:
D: R\{-1;1}
Ví dụ 2: Tìm tập xác định của hàm số sau:
y=(1-2x)^{\sqrt3-1}Bài giải:
Hàm số được xác định khi và chỉ khi hàm số này có nghĩa.
Để hàm số có nghĩa thì:
1 - 2x > 0 \Leftrightarrow x<\frac{1}{2}Vậy tập xác định của hàm số trên là:
D= (-∞;\frac{1}{2})Ví dụ 3: Tìm tập xác định của hàm số sau:
y=\sqrt{\frac{x^2-3x+2}{3-x}}+(2x-5)^{\sqrt7 +1}-3x-1Bài giải:
Ta thấy hàm số trên có chứa căn thức của phân số, do vậy để hàm này có nghĩa ta xét các điều kiện như sau:
\begin{cases}\frac{x^2-3x+2}{3-x} \geq 0\\2x-5>0\end{cases} \Leftrightarrow \begin{cases}\left[\begin{array}{c}x\leq1\\2\leq x<3\\ \end{array} \right.\\x>\frac{5}{2}\end{cases} \Leftrightarrow\frac{5}{2}< x <3Từ đó suy ra tập xác định của hàm số là:
D=\left(\frac{5}{2}; 3 \right)Gia sư Online Học Online Toán 12 Hàm Số Bậc Nhất - Lý Thuyết Và Phương Pháp Giải Bài Tập Học Online Hóa 10 Học Online Toán 11 Học Online Toán 6 Học Online Toán 10 Học Online Toán 7 Học Online Lý 10 Học Online Lý 9 Học Online Toán 8 Học Online Toán 9 Học Tiếng Anh 6 Học Tiếng Anh 7Tham khảo ngay các khoá học online của Marathon Education
Trên đây là tổng hợp lý thuyết về cách tìm tập xác định và điều kiện hàm số mũ cùng với một số bài tập ví dụ để các em hiểu và vận dụng một cách dễ dàng. Các em hãy theo dõi Marathon Education thường xuyên để học trực tuyến thêm nhiều kiến thức về Toán – Lý – Hóa. Chúc các em học tập tốt và đạt điểm số cao trong học kỳ tới!
Từ khóa » Tìm Tập Xác định Của Hàm Số Mũ X
-
Tập Xác định Của Hàm Số Mũ Lũy Thừa Lôgarit
-
Tìm Tập Xác định Của Hàm Số Mũ, Lũy Thừa, Lôgarit
-
Tập Xác định Của Hàm Số Mũ, Lũy Thừa, Logarit Cực đơn Giản [VD ...
-
Cách Xác định Tập Xác định Của Hàm Số Mũ - Logarit Chuẩn - Legoland
-
Tìm Tập Xác định Của Hàm Số Mũ Lũy Thừa Logarit
-
Thủ Thuật Tìm Tập Xác định Của Hàm Số Mũ Và Logarit Siêu Nhanh
-
Tìm Tập Xác định Của Hàm Số Lũy Thừa, Hàm Số Mũ Và Hàm Số Logarit
-
Tìm Tập Xác định Của Hàm Số Mũ Và Hàm Số Lôgarit
-
[ Cẩm Nang ] Tập Xác định Của Hàm Số Mũ,phương Trình Mũ, Bất ...
-
Tập Xác định Của Hàm Lũy Thừa
-
Cách Tìm Tập Xác định Của Hàm Số Mũ Y = A^x Cơ Bản - YouTube
-
Cách Tìm Tập Xác định Của Hàm Số Mũ, Lũy Thừa, Logarit - TopLoigiai
-
Tổng Hợp Tìm Tập Xác định Của Hàm Số Mũ | Bán Máy Nước Nóng
-
Phương Pháp Tìm Tập Xác định Của Hàm Số Mũ Và Bài Tập Mẫu