Cách Tính Nhanh đạo Hàm - Công Thức đạo Hàm Toán 11

Cách tính nhanh đạo hàm Công thức đạo hàm Toán 11 Bài trước Tải về Bài sau Lớp: Lớp 11 Môn: Toán Loại File: Word + PDF Phân loại: Tài liệu Tính phí

Nâng cấp gói Pro để trải nghiệm website VnDoc.com KHÔNG quảng cáo, và tải file cực nhanh không chờ đợi.

Tìm hiểu thêm » Mua ngay Từ 79.000đ Hỗ trợ Zalo

Cách tính đạo hàm Toán 11

  • A. Đạo hàm của hàm phân thức
  • B. Đạo hàm của hàm phân thức bậc 1/ bậc 1
  • C. Đạo hàm của hàm phân thức bậc 2/ bậc 1
  • D. Đạo hàm của hàm phân thức bậc 2/ bậc 2
  • E. Công thức tính nhanh đạo hàm của một số hàm số thường gặp
  • F. Bài tập tính đạo hàm
  • G. Lịch thi THPT Quốc Gia 2024

Bài tập Đạo hàm Toán lớp 11 vừa được VnDoc.com sưu tầm và xin gửi tới bạn đọc để bạn đọc cùng tham khảo. Mời các bạn cùng theo dõi bài viết dưới đây nhé.

A. Đạo hàm của hàm phân thức

Để tính đạo hàm phân thức ta sử dụng chung một công thức

\left( {\frac{u}{v}} \right)\(\left( {\frac{u}{v}} \right)' = \frac{{u'.v - v'.u}}{{{v^2}}}\)

Công thức đặc biệt: \left( {\frac{1}{x}} \right)\(\left( {\frac{1}{x}} \right)' = \frac{{ - 1}}{{{x^2}}};\left( {\frac{1}{u}} \right)' = - \frac{{u'}}{{{u^2}}}\)

B. Đạo hàm của hàm phân thức bậc 1/ bậc 1

y = \frac{{ax + b}}{{cx + d}} \Rightarrow y\(y = \frac{{ax + b}}{{cx + d}} \Rightarrow y' = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}\)

Ví dụ: Tính đạo hàm của hàm số: 

a. y = \frac{{3x - 2}}{{x - 1}}\(y = \frac{{3x - 2}}{{x - 1}}\) b. y = \frac{{x + 5}}{{2x + 3}}\(y = \frac{{x + 5}}{{2x + 3}}\)

Hướng dẫn giải

a. y\(y' = \frac{{3.\left( { - 1} \right) - \left( { - 2} \right).1}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\)

b. y\(y' = \frac{{1.3 - 5.2}}{{{{\left( {2x + 3} \right)}^2}}} = \frac{{ - 7}}{{{{\left( {2x + 3} \right)}^2}}}\)

C. Đạo hàm của hàm phân thức bậc 2/ bậc 1

y = \frac{{a{x^2} + bx + c}}{{dx + e}} \Rightarrow y\(y = \frac{{a{x^2} + bx + c}}{{dx + e}} \Rightarrow y' = \frac{{ad{x^2} + 2aex + be - cd}}{{{{\left( {dx + e} \right)}^2}}}\)

Ví dụ: Tính đạo hàm của hàm số y = \frac{{3{x^2} - 2x + 1}}{{x + 2}}\(y = \frac{{3{x^2} - 2x + 1}}{{x + 2}}\)

Hướng dẫn giải

y = \frac{{3{x^2} - 2x + 1}}{{x + 2}} \Rightarrow y\(y = \frac{{3{x^2} - 2x + 1}}{{x + 2}} \Rightarrow y' = \frac{{3.1{x^2} + 2.3.2x + \left( { - 2} \right).2 - 1.1}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{3{x^2} + 12x - 5}}{{{{\left( {x + 2} \right)}^2}}}\)

D. Đạo hàm của hàm phân thức bậc 2/ bậc 2

\begin{matrix}   y = \dfrac{{{a_1}{x^2} + {b_1}x + {c_1}}}{{{a_2}{x^2} + {b_2}x + {c_2}}} \Rightarrow y\(\begin{matrix} y = \dfrac{{{a_1}{x^2} + {b_1}x + {c_1}}}{{{a_2}{x^2} + {b_2}x + {c_2}}} \Rightarrow y' = \dfrac{{\left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}} \\ {{a_2}}&{{b_2}} \end{array}} \right|{x^2} + 2\left| {\begin{array}{*{20}{c}} {{a_1}}&{{c_1}} \\ {{a_2}}&{{c_2}} \end{array}} \right|x + \left| {\begin{array}{*{20}{c}} {{b_1}}&{{c_1}} \\ {{b_2}}&{{c_2}} \end{array}} \right|}}{{{{\left( {{a_2}{x^2} + {b_2}x + {c_2}} \right)}^2}}} \hfill \\ \Rightarrow y' = \dfrac{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right){x^2} + 2\left( {{a_1}{c_2} - {a_2}{c_1}} \right)x + {b_1}{c_2} - {b_2}{c_1}}}{{{{\left( {{a_2}{x^2} + {b_2}x + {c_2}} \right)}^2}}} \hfill \\ \end{matrix}\)

Ví dụ: Tính đạo hàm của hàm số y = \frac{{3{x^2} - 2x + 1}}{{{x^2} + x + 2}}\(y = \frac{{3{x^2} - 2x + 1}}{{{x^2} + x + 2}}\)

Hướng dẫn giải

y = \frac{{3{x^2} - 2x + 1}}{{{x^2} + x + 2}} \Rightarrow y\(y = \frac{{3{x^2} - 2x + 1}}{{{x^2} + x + 2}} \Rightarrow y' = \frac{{\left| {\begin{array}{*{20}{c}} 3&{ - 2} \\ 1&1 \end{array}} \right| + 2\left| {\begin{array}{*{20}{c}} 3&1 \\ 1&2 \end{array}} \right|x + \left| {\begin{array}{*{20}{c}} { - 2}&1 \\ 1&2 \end{array}} \right|}}{{{{\left( {{x^2} + x + 2} \right)}^2}}} = \frac{{5{x^2} + 10x - 5}}{{{{\left( {{x^2} + x + 2} \right)}^2}}}\)

E. Công thức tính nhanh đạo hàm của một số hàm số thường gặp

Hàm số bậc nhất/bậc nhất: f(x)=ax+b/cx+d⇒f′(x)=ad−bc/(cx+d)2.

Hàm số bậc hai/bậc nhất: f(x)=ax2+bx+c/mx+n⇒f(x)=amx2+2anx+bn−cm/(mx+n)2

Hàm số đa thức bậc ba: f(x)=ax3+bx2+cx+d⇒f(x)=3ax2+2bx+c

Hàm số trùng phương: f(x)=ax4+bx2+c⇒f′(x)=4ax3+2bx.

Hàm số chứa căn bậc hai: f(x)=√u(x)⇒f′(x)=u′(x)/2√u(x)

Hàm số chứa trị tuyệt đối: f(x)=|u(x)|⇒f′(x)=u′(x).u(x)/|u(x)|.

F. Bài tập tính đạo hàm

Câu 1. Tìm m\(m\) để các hàm số y = (m - 1)x^{3} - 3(m + 2)x^{2} - 6(m + 2)x + 1\(y = (m - 1)x^{3} - 3(m + 2)x^{2} - 6(m + 2)x + 1\)y\(y' \geq 0 \Leftrightarrow (m - 1)x^{2} - 2(m + 2)x - 2(m + 2) \geq 0\)

m = 1\(m = 1\) thì \Leftrightarrow - 6x - 6 \geq 0 \Leftrightarrow x \leq - 1\(\Leftrightarrow - 6x - 6 \geq 0 \Leftrightarrow x \leq - 1\) nên m = 1\(m = 1\)

m \neq 1\(m \neq 1\) thì đúng với \forall x\mathbb{\in R \Leftrightarrow}\left\{ \begin{matrix} a = m - 1 > 0 \\ \Delta\(y' \leq 0 \Leftrightarrow mx^{2} - 2mx + 3m - 1 \leq 0\)

m = 0\(m = 0\) thì trở thành: - 1 \leq 0\(- 1 \leq 0\) đúng với \forall x\mathbb{\in R}\(\forall x\mathbb{\in R}\)

m \neq 0\(m \neq 0\), khi đó đúng với \forall x\mathbb{\in R \Leftrightarrow}\left\{ \begin{matrix} a = m < 0 \\ \Delta\(f'(x) = \left\{ \begin{matrix} \frac{a}{2\sqrt{x}}\ \ \ khi\ 0 < x < x_{0} \\ 2x\ \ \ \ \ \ \ khi\ x \geq x_{0} \\ \end{matrix} \right.\) nên hàm số f\(f\) có đạo hàm liên tục trên khoảng (0; + \infty)\((0; + \infty)\).

Ta có \frac{a}{2\sqrt{x_{0}}} = 2x_{0} \Leftrightarrow a = 4x_{0}\sqrt{x_{0}}\(\frac{a}{2\sqrt{x_{0}}} = 2x_{0} \Leftrightarrow a = 4x_{0}\sqrt{x_{0}}\) (1)\((1)\)

Mặt khác: Hàm số f\(f\) liên tục tại x_{0}\(x_{0}\) nên x_{0}^{2} + 12 = a\sqrt{x_{0}}\(x_{0}^{2} + 12 = a\sqrt{x_{0}}\) (2)\((2)\)

Từ (1)\((1)\)(2)\((2)\) suy ra x_{0} = 2\(x_{0} = 2\)a = 8\sqrt{2}\(a = 8\sqrt{2}\)

Vậy S = a + x_{0} = 2\left( 1 + 4\sqrt{2} \right)\(S = a + x_{0} = 2\left( 1 + 4\sqrt{2} \right)\).

Câu 10. Cho hàm số f(x) = (2018 + x)(2017 + 2x)(2016 + 3x)....(1 + 2018x)\(f(x) = (2018 + x)(2017 + 2x)(2016 + 3x)....(1 + 2018x)\). Tính

Từ khóa » Ct đạo Hàm 11