Cách Xét Tính đơn điệu (đồng Biến, Nghịch Biến) Của Hàm Số Cực Hay

Cách xét tính đơn điệu (đồng biến, nghịch biến) của hàm số (cực hay)
  • Siêu sale sách Toán - Văn - Anh Vietjack 15-12 trên Shopee mall
Trang trước Trang sau

Bài viết Cách xét tính đơn điệu (đồng biến, nghịch biến) của hàm số với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách xét tính đơn điệu (đồng biến, nghịch biến) của hàm số.

  • Cách giải bài tập xét tính đơn điệu (đồng biến, nghịch biến) của hàm số
  • Ví dụ minh họa bài tập xét tính đơn điệu (đồng biến, nghịch biến) của hàm số
  • Bài tập tự luyện xét tính đơn điệu (đồng biến, nghịch biến) của hàm số

Cách xét tính đơn điệu (đồng biến, nghịch biến) của hàm số (cực hay)

1. Phương pháp giải.

Quảng cáo

C1: Cho hàm số y = f(x) xác định trên K. Lấy x1; x2 ∈ K;x1 < x2, đặt T = f(x1 )-f(x2 )

+ Hàm số đồng biến trên K ⇔ T > 0.

+ Hàm số nghịch biến trên K ⇔ T < 0.

C2: Cho hàm số y = f(x) xác định trên K. Lấy x1; x2 ∈ K;x1 ≠ x2, đặt Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

+ Hàm số đồng biến trên K ⇔ T > 0.

+ Hàm số nghịch biến trên K ⇔ T < 0.

2. Các ví dụ minh họa.

Ví dụ 1: Xét sự biến thiên của hàm số sau trên khoảng (1; + ∞)

a) y = 3/(x-1)

b) y = x + 1/x

Hướng dẫn:

a) Với mọi x1; x2 ∈ (1; + ∞); x1 ≠ x2 ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vì x1 > 1; x2 > 1 nên

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Do đó hàm số y = 3/(x-1) nghịch biến trên khoảng (1; + ∞).

b) Với mọi x1; x2 ∈ (1; + ∞); x1 ≠ x2 ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vì x1 > 1; x2 > 1

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ánnên hàm số y = x + 1/x đồng biến trên khoảng (1; + ∞).

Quảng cáo

Ví dụ 2: Cho hàm số y = f(x) = x2 - 4

a) Xét chiều biến thiên cuả hàm số trên (- ∞;0) và trên (0;+ ∞)

b) Lập bảng biến thiên của hàm số trên [-1;3] từ đó xác định giá trị lớn nhất, nhỏ nhất của hàm số trên[-1;3].

Hướng dẫn:

TXĐ: D = R.

a) ∀ x1; x2 ∈ R; x1 < x2 ⇒ x2 - x1 > 0

Ta có T = f(x2 ) - f(x1 )=(x22 - 4) - (x12 - 4) = (x2 - x1 )(x2 + x1 )

Nếu x1; x2 ∈ (- ∞;0) thì T < 0. Vậy hàm số y=f(x) nghịch biến trên (- ∞;0).

Nếu x1; x2 ∈ (0; + ∞) thì T > 0. Vậy hàm số y = f(x) đồng biến trên (0; + ∞).

b) Bảng biến thiên của hàm số y = f(x) = x2 - 4 trên [-1; 3]

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Dựa vào bảng biến thiên ta có:

Giá trị lớn nhất của hàm số trên [-1; 3] là 5, đạt được khi x = 3.

Giá trị nhỏ nhất của hàm số trên [-1; 3] là – 4, đạt được khi x = 0.

Ví dụ 3: Xét sự biến thiên của hàm sốToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ántrên tập xác định của nó.

Áp dụng tìm số nghiệm của các phương trình sau:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Quảng cáo

Hướng dẫn:

ĐKXĐ:Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra TXĐ: D = [1; + ∞)

Với mọi x1; x2 ∈ [1; + ∞), x1 ≠ x2, ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Nên hàm sốToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ánđồng biến trên khoảng [1; + ∞).

a) Vì hàm số đã cho đồng biến trên [1; + ∞) nên

Nếu x > 1 ⇒ f(x) > f(1) hayToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra phương trìnhToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ánkhông có nghiệm x > 1.

Với x = 1 dễ thấy nó là nghiệm của phương trình đã cho

Vậy phương trình có nghiệm duy nhất x = 1.

b)Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

ĐKXĐ: x ≥ 1

Đặt x2 + 1 = t, t ≥ 1 ⇒ x2 = t - 1

Do x ≥ 1 nên x = √(t-1). Khi đó phương trình trở thành:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án⇔ f(x)=f(t)

Nếu x > t ⇒ f(x) > f(t) hay

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra phương trình đã cho không có nghiệm thỏa mãn x > t.

Quảng cáo

Nếu x < t ⇒ f(x)< f(t) hay

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra phương trình đã cho không có nghiệm thỏa mãn x < t.

Vậy f(x) = f(t) ⇔ x = t hay x2 + 1 = x ⇔ x2 - x + 1 = 0 (vô nghiệm)

Vậy phương trình đã cho vô nghiệm.

Nhận xét:

Hàm số y = f(x) đồng biến (hoặc nghịch biến) trên toàn bộ tập xác định thì phương trình f(x)=0 có tối đa một nghiệm.

Nếu hàm số y = f(x) đồng biến (nghịch biến) trên D thì f(x) > f(y) ⇔ x > y (x < y) và f(x) = f(y) ⇔ x = y ∀ x,y ∈ D. Tính chất này được sử dụng nhiều trong các bài toán đại số như giải phương trình , bất phương trình , hệ phương trình và các bài toán cực trị.

3. Bài tập tự luyện

Bài 1. Xét sự biến thiên của hàm số y = 2x4 + 1 trên khoảng (0;+∞).

Hướng dẫn giải

Với mọi x1;x2 (0;+∞) và x1 < x2 ta có:

f(x1) - f(x2) = 2x14 + 1 - (2x24 + 1)

= 2(x14 - x24)

= 2(x12 + x22)(x12 - x22)

= 2(x12 + x22)(x1 + x2)(x1 - x2) < 0

Vậy hàm số đồng biến trên khoảng (0;+∞).

Bài 2. Xét sự biến thiên của hàm số y=2-x1+x trên khoảng (-1;+∞).

Hướng dẫn giải

 Với mọi x1;x2 (-1;+∞) và x1 < x2 ta có:

f(x1)-f(x2)=2-x11+x1-2-x21+x2

=(2-x1)(1+x2)(1+x1)(1+x2)-(2-x2)(1+x1)(1+x1)(1+x2)

=(2-x1)(1+x2)-(2-x2)(1+x1)(1+x1)(1+x2)

=2-x1+2x2-x1x2-(2-x2+2x1-x1x2)(1+x1)(1+x2)

=3x2-3x1(1+x1)(1+x2)>0

Vậy hàm số nghịch biến trên khoảng (-1;+∞).

Bài 3. Xét sự biến thiên của hàm số y=x2-2x+2trên khoảng (1;+∞).

Hướng dẫn giải

Ta thấy:

x2 - 2x + 2 = (x - 1)2 + 1 > 0∀x∈ℝ nên hàm số xác định với mọi x (1;+∞).

Với mọi x1;x2 ∈ ℝ và x1 < x2 ta có:

Cách xét tính đơn điệu (đồng biến, nghịch biến) của hàm số (cực hay)

Vậy hàm số nghịch biến trên khoảng (1;+∞).

Bài 4.Lập bảng biến thiên và vẽ đồ thị của hàm số y=x2+3x+2.

Hướng dẫn giải

Ta có −b2a=−32;−Δ4a=54

Bảng biến thiên

Cách xét tính đơn điệu (đồng biến, nghịch biến) của hàm số (cực hay)

Vậy hàm số đã cho nghịch biến trên khoảng (-∞;-32) và đồng biến trên khoảng (-32;+∞).

Bài 5. Lập bảng biến thiên và vẽ đồ thị của hàm số y=−x2+35x+3.

Hướng dẫn giải

Ta có −b2a=310; −Δ4a=309100.

Bảng biến thiên

Cách xét tính đơn điệu (đồng biến, nghịch biến) của hàm số (cực hay)

Vậy hàm số đã cho đồng biến trên khoảng (-∞;310) và nghịch biến trên khoảng (310;+∞).

Bài 6. Xét sự biến thiên của hàm số y = x3 - 3x2 + 1 trên khoảng (2;+∞).

Bài 7. Xét sự biến thiên của hàm số y = x4 + 4x2 trên khoảng (-∞;0).

Bài 8. Xét sự biến thiên của hàm số y=3-2xx+7 trên khoảng (-7;+∞).

Bài 9. Tìm khoảng đồng biến, khoảng nghịch biến của hàm số y=-2x2+7x+3.

Bài 10. Tìm khoảng đồng biến, khoảng nghịch biến của hàm số y=-x2+23x+35

Lời giải bài tập lớp 10 sách mới:

  • Giải bài tập Lớp 10 Kết nối tri thức
  • Giải bài tập Lớp 10 Chân trời sáng tạo
  • Giải bài tập Lớp 10 Cánh diều
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):

  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
  • 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

Đề thi, chuyên đề Cánh diều, Kết nối tri thức, Chân trời sáng tạo...

4.5 (243)

799,000đ

99,000 VNĐ

Sách luyện 30 đề thi thử THPT năm 2025 mới

4.5 (243)

199,000đ

99.000 - 149.000 VNĐ

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau ham-so-bac-nhat-va-bac-hai.jsp Giải bài tập lớp 10 sách mới các môn học
  • Giải Tiếng Anh 10 Global Success
  • Giải Tiếng Anh 10 Friends Global
  • Giải sgk Tiếng Anh 10 iLearn Smart World
  • Giải sgk Tiếng Anh 10 Explore New Worlds
  • Lớp 10 - Kết nối tri thức
  • Soạn văn 10 (hay nhất) - KNTT
  • Soạn văn 10 (ngắn nhất) - KNTT
  • Soạn văn 10 (siêu ngắn) - KNTT
  • Giải sgk Toán 10 - KNTT
  • Giải sgk Vật lí 10 - KNTT
  • Giải sgk Hóa học 10 - KNTT
  • Giải sgk Sinh học 10 - KNTT
  • Giải sgk Địa lí 10 - KNTT
  • Giải sgk Lịch sử 10 - KNTT
  • Giải sgk Kinh tế và Pháp luật 10 - KNTT
  • Giải sgk Tin học 10 - KNTT
  • Giải sgk Công nghệ 10 - KNTT
  • Giải sgk Hoạt động trải nghiệm 10 - KNTT
  • Giải sgk Giáo dục quốc phòng 10 - KNTT
  • Lớp 10 - Chân trời sáng tạo
  • Soạn văn 10 (hay nhất) - CTST
  • Soạn văn 10 (ngắn nhất) - CTST
  • Soạn văn 10 (siêu ngắn) - CTST
  • Giải Toán 10 - CTST
  • Giải sgk Vật lí 10 - CTST
  • Giải sgk Hóa học 10 - CTST
  • Giải sgk Sinh học 10 - CTST
  • Giải sgk Địa lí 10 - CTST
  • Giải sgk Lịch sử 10 - CTST
  • Giải sgk Kinh tế và Pháp luật 10 - CTST
  • Giải sgk Hoạt động trải nghiệm 10 - CTST
  • Lớp 10 - Cánh diều
  • Soạn văn 10 (hay nhất) - Cánh diều
  • Soạn văn 10 (ngắn nhất) - Cánh diều
  • Soạn văn 10 (siêu ngắn) - Cánh diều
  • Giải sgk Toán 10 - Cánh diều
  • Giải sgk Vật lí 10 - Cánh diều
  • Giải sgk Hóa học 10 - Cánh diều
  • Giải sgk Sinh học 10 - Cánh diều
  • Giải sgk Địa lí 10 - Cánh diều
  • Giải sgk Lịch sử 10 - Cánh diều
  • Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
  • Giải sgk Tin học 10 - Cánh diều
  • Giải sgk Công nghệ 10 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 10 - Cánh diều

Từ khóa » Hàm Số Bậc 2 đồng Biến Nghịch Biến Lớp 10