Cách Xét Tính đơn điệu, Tính Bị Chặn Của Dãy Số Cực Hay - Toán Lớp 11

Cách xét Tính đơn điệu, tính bị chặn của dãy số cực hay
  • Giảm giá 50% sách VietJack đánh giá năng lực các trường trên Shopee Mall
Trang trước Trang sau

Bài viết Cách xét Tính đơn điệu, tính bị chặn của dãy số với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách xét Tính đơn điệu, tính bị chặn của dãy số.

  • Cách giải và ví dụ minh họa bài tập xét Tính đơn điệu, tính bị chặn của dãy số
  • Bài tập vận dụng xét Tính đơn điệu, tính bị chặn của dãy số

Cách xét Tính đơn điệu, tính bị chặn của dãy số cực hay

A. Phương pháp giải & Ví dụ

Quảng cáo

1. Dãy số tăng, dãy số giảm

♦ Dãy số (un) gọi là dãy tăng nếu un < un+1 ∀n ∈ ¥

♦ Dãy số (un) gọi là dãy giảm nếu un > un+1 ∀n ∈ ¥

2. Dãy số bị chặn

♦ Dãy số (un) gọi là dãy bị chặn trên nếu có một số thực sao cho un < M ∀n ∈ ¥.

♦ Dãy số (un) gọi là dãy bị chặn dưới nếu có một số thực sao cho un > m∀n ∈ ¥..

♦ Dãy số vừa bị chặn trên vừa bị chặn dưới gọi là dãy bị chặn, tức là tồn tại số thực dương M sao cho |un | < M ∀n ∈ ¥..

♦ Để xét tính đơn điệu của dãy số (un) ta xét : kn=(un+1-un)

* Nếu kn > 0∀n ∈ ¥ ⇒ dãy (un) tăng

* Nếu kn < 0∀n ∈ ¥ ⇒ dãy (un) giảm.

Khi un > 0 ∀n ∈ ¥ ta có thể xét Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

* Nếu tn > 1 ⇒ dãy số (un) tăng

* Nếu tn < 1 ⇒ dãy số (un) giảm

♦ Để xét tính bị chặn của dãy số ta có thể dự đoán rồi chứng minh bằng quy nạp.

Ví dụ minh họa

Bài 1: Cho dãy số (un). Chứng minh rằng dãy un là dãy giảm và bị chặn.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án Quảng cáo

Đáp án và hướng dẫn giải

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Do đó, để chứng minh dãy (un) giảm ta chứng minh un > 1∀n ≥ 1

Thật vậy:

Với n = 1 ⇒ u1=2 > 1

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Theo nguyên lí quy nạp ta có un > 1 ∀n ≥ 1

Suy ra un-un-1 < 0 ⇔ un < un-1 ∀n ≥ 2 hay dãy (un) giảm

Theo chứng minh trên, ta có: 1 < un < u1=2∀n ≥ 1

Vậy dãy (un) là dãy bị chặn.

Bài 2: Cho dãy số (un). Chứng minh rằng dãy (un) là dãy tăng và bị chặn

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án và hướng dẫn giải

Ta chứng minh dãy (un) là dãy tăng bằng phương pháp quy nạp

* Dễ thấy: u1 < u2 < u3.

* Giả sử uk-1 < uk ∀k ≥ 2, ta chứng minh uk+1 > uk.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy (un) là dãy tăng.

Cũng bằng quy nạp ta chứng minh được un < 4 ∀n , hơn nữa un > 0

Nên dãy (un) là dãy bị chặn.

B. Bài tập vận dụng

Bài 1: Xét tính tăng giảm của các dãy số sau

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

1. Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

nên dãy (un) là dãy tăng

2. Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Nên dãy (un) giảm.

Quảng cáo

Bài 2: Xét tính tăng, giảm và bị chặn của dãy số (un) , biết:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

1. Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

với mọi n ≥ 1.

Suy ra u(n+1) > un ∀n ≥ 1 ⇒ dãy (un) là dãy tăng.

Mặt khác:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy dãy (un) là dãy bị chặn.

2. Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

3. Ta có: un > 0 ∀n ≥ 1

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

⇒ u(n+1) < un ∀n ≥ 1 ⇒ dãy (un) là dãy số giảm.

Mặt khác: 0 < un < 1 ⇒ dãy (un) là dãy bị chặn.

Bài 3: Cho dãy số (un):

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

a) Khi a = 4, hãy tìm 5 số hạng đầu của dãy

b) Tìm a để dãy số đã cho là dãy số tăng.

Lời giải:

a) Với a = 4 ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có: 5 số hạng đầu của dãy là

u1=6; u2=10/3; u3=14/5; u4=18/7; u5=22/9.

b) Ta có dãy số un tăng khi và chỉ khi

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

⇒ -a-4 > 0 ⇒ a < -4

Bài 4: Cho dãy số (un)

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

a) Viết 6 số hạng đầu của dãy

b) Chứng minh un=3(n-1)+1;n=1,2…

Lời giải:

a) Ta có: u1=2;u2=4;u3=10;u4=28;u5=82;u6=244.

b) Chứng minh bài toán bằng phương pháp quy nạp hoặc chứng minh bằng cách sau

Ta có: un-1=3(u(n-1)-1)=32 (u(n-2)-1)=⋯=3(n-1) (u1-1)

Suy ra: un-1=3(n-1) ⇒ un=1+3(n-1).

Quảng cáo

Bài 5: Cho dãy số un=-5(n-1)+3n+n+2;n=1,2…

a) Viết 5 số hạng đầu của dãy

b) Chứng minh rằng: un=2u(n-1)+3(n-1)-n.

Lời giải:

Với mọi n = Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Suy ra un < u0-n+1=2012-n

Do đó: 2011 – n < un < 2012-n ⇒ [ un ]=2011-n

với n = Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vì u0=2011 và Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Nên [u0 ]=2011-0,[u1 ]=2011-1

Vậy [un ]=2011-n,n = Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án.

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

  • Dạng 1: Phương pháp quy nạp toán học
  • Trắc nghiệm phương pháp quy nạp toán học
  • Dạng 2: Xác định số hạng của dãy số
  • Trắc nghiệm xác định số hạng của dãy số
  • Trắc nghiệm tính đơn điệu, tính bị chặn của dãy số
  • Dạng 4: Phương pháp giải bài tập Cấp số cộng
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):

  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
  • 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

Đề thi, chuyên đề Cánh diều, Kết nối tri thức, Chân trời sáng tạo...

4.5 (243)

799,000đ

99,000 VNĐ

Sách luyện 30 đề thi thử THPT năm 2025 mới

4.5 (243)

199,000đ

99.000 - 149.000 VNĐ

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau day-so-cap-so-cong-va-cap-so-nhan.jsp Giải bài tập lớp 11 sách mới các môn học
  • Giải Tiếng Anh 11 Global Success
  • Giải sgk Tiếng Anh 11 Smart World
  • Giải sgk Tiếng Anh 11 Friends Global
  • Lớp 11 - Kết nối tri thức
  • Soạn văn 11 (hay nhất) - KNTT
  • Soạn văn 11 (ngắn nhất) - KNTT
  • Giải sgk Toán 11 - KNTT
  • Giải sgk Vật Lí 11 - KNTT
  • Giải sgk Hóa học 11 - KNTT
  • Giải sgk Sinh học 11 - KNTT
  • Giải sgk Lịch Sử 11 - KNTT
  • Giải sgk Địa Lí 11 - KNTT
  • Giải sgk Giáo dục KTPL 11 - KNTT
  • Giải sgk Tin học 11 - KNTT
  • Giải sgk Công nghệ 11 - KNTT
  • Giải sgk Hoạt động trải nghiệm 11 - KNTT
  • Giải sgk Giáo dục quốc phòng 11 - KNTT
  • Giải sgk Âm nhạc 11 - KNTT
  • Lớp 11 - Chân trời sáng tạo
  • Soạn văn 11 (hay nhất) - CTST
  • Soạn văn 11 (ngắn nhất) - CTST
  • Giải sgk Toán 11 - CTST
  • Giải sgk Vật Lí 11 - CTST
  • Giải sgk Hóa học 11 - CTST
  • Giải sgk Sinh học 11 - CTST
  • Giải sgk Lịch Sử 11 - CTST
  • Giải sgk Địa Lí 11 - CTST
  • Giải sgk Giáo dục KTPL 11 - CTST
  • Giải sgk Hoạt động trải nghiệm 11 - CTST
  • Giải sgk Âm nhạc 11 - CTST
  • Lớp 11 - Cánh diều
  • Soạn văn 11 Cánh diều (hay nhất)
  • Soạn văn 11 Cánh diều (ngắn nhất)
  • Giải sgk Toán 11 - Cánh diều
  • Giải sgk Vật Lí 11 - Cánh diều
  • Giải sgk Hóa học 11 - Cánh diều
  • Giải sgk Sinh học 11 - Cánh diều
  • Giải sgk Lịch Sử 11 - Cánh diều
  • Giải sgk Địa Lí 11 - Cánh diều
  • Giải sgk Giáo dục KTPL 11 - Cánh diều
  • Giải sgk Tin học 11 - Cánh diều
  • Giải sgk Công nghệ 11 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 11 - Cánh diều
  • Giải sgk Âm nhạc 11 - Cánh diều

Từ khóa » Dãy Bị Chặn Là Gì