The Cannizzaro reaction, named after its discoverer Stanislao Cannizzaro, is a chemical reaction which involves the base-induced disproportionation of two molecules of a non-enolizable aldehyde to give a primary alcohol and a carboxylic acid.[1][2]
Cannizzaro first accomplished this transformation in 1853, when he obtained benzyl alcohol and potassium benzoate from the treatment of benzaldehyde with potash (potassium carbonate). More typically, the reaction would be conducted with sodium hydroxide or potassium hydroxide, giving the sodium or potassium carboxylate salt of the carboxylic-acid product:
2 C6H5CHO + KOH → C6H5CH2OH + C6H5COOK
The process is a redox reaction involving transfer of a hydride from one substrate molecule to the other: one aldehyde is oxidized to form the acid, the other is reduced to form the alcohol.[3]
Mechanism
[edit]
The reaction involves a nucleophilic acyl substitution on an aldehyde, with the leaving group concurrently attacking another aldehyde in the second step. First, hydroxide attacks a carbonyl. The resulting tetrahedral intermediate then collapses, re-forming the carbonyl and transferring hydride to attack another carbonyl.[4] In the final step of the reaction, the acid and alkoxide ions formed exchange a proton. In the presence of a very high concentration of base, the aldehyde first forms a doubly charged anion from which a hydride ion is transferred to the second molecule of aldehyde to form carboxylate and alkoxide ions. Subsequently, the alkoxide ion acquires a proton from the solvent.
Overall, the reaction follows third-order kinetics. It is second order in aldehyde and first order in base:
rate = k[RCHO]2[OH−]
At very high base a second path (k') becomes important that is second order in base:
rate = k[RCHO]2[OH−] + k'[RCHO]2[OH−]2
The k' pathway implicates a reaction between the doubly charged anion (RCHO22−) and the aldehyde. The direct transfer of hydride ion is evident from the observation that the recovered alcohol does not contain any deuterium attached to the α-carbon when the reaction is performed in the presence of D2O.
Scope
[edit]
Due to the strongly alkaline reaction conditions, aldehydes that have alpha hydrogen atom(s) instead undergo deprotonation there, leading to enolates and possible aldol reactions. Under ideal conditions the reaction produces 50% of both the alcohol and the carboxylic acid (it takes two aldehydes to produce one acid and one alcohol).[5] This can be economically viable if the products can be separated and both have a value; the commercial conversion of furfural into furfuryl alcohol and 2-furoic acid is an example of this.[6] Alternatively, higher yields of one product (usually the alcohol) can be achieved in the crossed Cannizzaro reaction, in which a sacrificial aldehyde is used in combination with a more valuable chemical. In this variation, the reductant is formaldehyde, which is oxidized to sodium formate and the other aldehyde chemical is reduced to the alcohol. Thus, the yield of the valuable chemical is high, although the atom economy can be low. The final stage in the synthesis of pentaerythritol is an example.
A solvent-free reaction has been reported involving grinding liquid 2-chlorobenzaldehyde with potassium hydroxide in a mortar and pestle:[7]
Variations
[edit]
In the Tishchenko reaction, the base used is an alkoxide rather than hydroxide, and the product is an ester rather than the separate alcohol and carboxylate groups. After the nucleophilic base attacks an aldehyde, the resulting new oxygen anion attacks another aldehyde to give a hemiacetal linkage between two of the formerly aldehyde-containing reactants rather than undergoing tetrahedral collapse. Eventually tetrahedral collapse does occur, giving the stable ester product.
Certain ketones can undergo a Cannizzaro-type reaction, transferring one of their two carbon groups rather than the hydride that would be present on an aldehyde.[8]
See also
[edit]
Formose reaction - slow self-reaction of formaldehyde in hydroxide to form aldose sugars
Benzoin condensation - self-reaction of aldehydes to give α-hydroxy ketones
Meerwein–Ponndorf–Verley reduction and Oppenauer oxidation - related interconversions of ketones and secondary alcohols via disproportionations
References
[edit]
^Cannizzaro, S. (1853). "Ueber den der Benzoësäure entsprechenden Alkohol" [On the alcohol corresponding to benzoic acid]. Liebigs Annalen der Chemie und Pharmacie. 88: 129–130. doi:10.1002/jlac.18530880114.
^List, K.; Limpricht, H. (1854). "Ueber das sogenannte Benzoëoxyd und einige andere gepaarte Verbindungen" [On so-called benzoic oxide and some other paired compounds]. Liebigs Annalen der Chemie und Pharmacie. 90 (2): 190–210. doi:10.1002/jlac.18540900211.
^Geissman, T. A. "The Cannizzaro Reaction" Org. React. 1944, 2, 94. doi:10.1002/0471264180.or002.03(Review)
^Smith, Michael B.; March, Jerry (2007), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience, ISBN 978-0-471-72091-1
^W. C. Wilson (1941). "2-Furancarboxylic Acid and 2-Furylcarbinol". Organic Syntheses; Collected Volumes, vol. 1, p. 276.
^Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; López Granados, M. (2016). "Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels" (PDF). Energy Environ. Sci. 9 (4): 1144–1189. doi:10.1039/C5EE02666K. hdl:10261/184700. ISSN 1754-5692. S2CID 101343477.
^A Facile Solvent-Free Cannizzaro Reaction Phonchaiya, Sonthi; Panijpan, Bhinyo Rajviroongit, Shuleewan; Wright, Tony; Blanchfield, Joanne T. "A Facile Solvent-Free Cannizzaro Reaction" J. Chem. Educ. 2009, volume 86, page 85. doi:10.1021/ed086p85
^Jiang, Xin-Dong; Matsukawa, Shiro; Kakuda, Ken-ichiro; Fukuzaki, Yuta; Zhao, Wei-Li; Li, Lin-Song; Shen, Huai-Bin; Kojim, Satoshi; Yamamoto, Yohsuke (2010). "Efficient synthesis of tetradecafluoro-4-phenylheptan-4-ol by a Cannizzaro-type reaction and application of the alcohol as a bulky Martin ligand variant for a new anti-apicophilic phosphorane". Dalton Trans. 39 (41): 9823–9829. doi:10.1039/C0DT00539H. PMID 20859600.
v
t
e
Topics in organic reactions
Addition reaction
Elimination reaction
Polymerization
Reagents
Rearrangement reaction
Redox reaction
Regioselectivity
Stereoselectivity
Stereospecificity
Substitution reaction
A value
Alpha effect
Annulene
Anomeric effect
Antiaromaticity
Aromatic ring current
Aromaticity
Baird's rule
Baker–Nathan effect
Baldwin's rules
Bema Hapothle
Beta-silicon effect
Bicycloaromaticity
Bredt's rule
Bürgi–Dunitz angle
Catalytic resonance theory
Charge remote fragmentation
Charge-transfer complex
Clar's rule
Conformational isomerism
Conjugated system
Conrotatory and disrotatory
Curtin–Hammett principle
Dynamic binding (chemistry)
Edwards equation
Effective molarity
Electromeric effect
Electron-rich
Electron-withdrawing group
Electronic effect
Electrophile
Evelyn effect
Flippin–Lodge angle
Free-energy relationship
Grunwald–Winstein equation
Hammett acidity function
Hammett equation
George S. Hammond
Hammond's postulate
Homoaromaticity
Hückel's rule
Hyperconjugation
Inductive effect
Kinetic isotope effect
LFER solvent coefficients (data page)
Marcus theory
Markovnikov's rule
Möbius aromaticity
Möbius–Hückel concept
More O'Ferrall–Jencks plot
Negative hyperconjugation
Neighbouring group participation
2-Norbornyl cation
Nucleophile
Kennedy J. P. Orton
Passive binding
Phosphaethynolate
Polar effect
Polyfluorene
Ring strain
Σ-aromaticity
Spherical aromaticity
Spiroaromaticity
Steric effects
Superaromaticity
Swain–Lupton equation
Taft equation
Thorpe–Ingold effect
Vinylogy
Walsh diagram
Woodward–Hoffmann rules
Woodward's rules
Y-aromaticity
Yukawa–Tsuno equation
Zaitsev's rule
Σ-bishomoaromaticity
List of organic reactions
Carbon-carbon bond forming reactions
Acetoacetic ester synthesis
Acyloin condensation
Aldol condensation
Aldol reaction
Alkane metathesis
Alkyne metathesis
Alkyne trimerisation
Alkynylation
Allan–Robinson reaction
Arndt–Eistert reaction
Auwers synthesis
Aza-Baylis–Hillman reaction
Barbier reaction
Barton–Kellogg reaction
Baylis–Hillman reaction
Benary reaction
Bergman cyclization
Biginelli reaction
Bingel reaction
Blaise ketone synthesis
Blaise reaction
Blanc chloromethylation
Bodroux–Chichibabin aldehyde synthesis
Bouveault aldehyde synthesis
Bucherer–Bergs reaction
Buchner ring expansion
Cadiot–Chodkiewicz coupling
Carbonyl allylation
Carbonyl olefin metathesis
Castro–Stephens coupling
Chan rearrangement
Chan–Lam coupling
Claisen condensation
Claisen rearrangement
Claisen-Schmidt condensation
Combes quinoline synthesis
Corey–Fuchs reaction
Corey–House synthesis
Coupling reaction
Cross-coupling reaction
Cross dehydrogenative coupling
Cross-coupling partner
Dakin–West reaction
Darzens reaction
Diels–Alder reaction
Doebner reaction
Wulff–Dötz reaction
Ene reaction
Enyne metathesis
Ethenolysis
Favorskii reaction
Ferrier carbocyclization
Friedel–Crafts reaction
Fujimoto–Belleau reaction
Fujiwara–Moritani reaction
Fukuyama coupling
Gabriel–Colman rearrangement
Gattermann reaction
Glaser coupling
Grignard reaction
Grignard reagent
Hammick reaction
Heck reaction
Henry reaction
Heterogeneous metal catalyzed cross-coupling
High dilution principle
Hiyama coupling
Homologation reaction
Horner–Wadsworth–Emmons reaction
Hydrocyanation
Hydrovinylation
Hydroxymethylation
Ivanov reaction
Johnson–Corey–Chaykovsky reaction
Julia olefination
Julia–Kocienski olefination
Kauffmann olefination
Knoevenagel condensation
Knorr pyrrole synthesis
Kolbe–Schmitt reaction
Kowalski ester homologation
Kulinkovich reaction
Kumada coupling
Liebeskind–Srogl coupling
Malonic ester synthesis
Mannich reaction
McMurry reaction
Meerwein arylation
Methylenation
Michael reaction
Minisci reaction
Mizoroki-Heck vs. Reductive Heck
Nef isocyanide reaction
Nef synthesis
Negishi coupling
Nierenstein reaction
Nitro-Mannich reaction
Nozaki–Hiyama–Kishi reaction
Olefin conversion technology
Olefin metathesis
Palladium–NHC complex
Passerini reaction
Peterson olefination
Pfitzinger reaction
Piancatelli rearrangement
Pinacol coupling reaction
Prins reaction
Quelet reaction
Ramberg–Bäcklund reaction
Rauhut–Currier reaction
Reformatsky reaction
Reimer–Tiemann reaction
Rieche formylation
Ring-closing metathesis
Robinson annulation
Sakurai reaction
Seyferth–Gilbert homologation
Shapiro reaction
Sonogashira coupling
Stetter reaction
Stille reaction
Stollé synthesis
Stork enamine alkylation
Suzuki reaction
Takai olefination
Thermal rearrangement of aromatic hydrocarbons
Thorpe reaction
Ugi reaction
Ullmann reaction
Wagner-Jauregg reaction
Weinreb ketone synthesis
Wittig reaction
Wurtz reaction
Wurtz–Fittig reaction
Zincke–Suhl reaction
Homologation reactions
Arndt–Eistert reaction
Hooker reaction
Kiliani–Fischer synthesis
Kowalski ester homologation
Methoxymethylenetriphenylphosphorane
Seyferth–Gilbert homologation
Wittig reaction
Olefination reactions
Bamford–Stevens reaction
Barton–Kellogg reaction
Boord olefin synthesis
Chugaev elimination
Cope reaction
Corey–Winter olefin synthesis
Dehydrohalogenation
Elimination reaction
Grieco elimination
Hofmann elimination
Horner–Wadsworth–Emmons reaction
Hydrazone iodination
Julia olefination
Julia–Kocienski olefination
Kauffmann olefination
McMurry reaction
Peterson olefination
Ramberg–Bäcklund reaction
Shapiro reaction
Takai olefination
Wittig reaction
Carbon-heteroatom bond forming reactions
Azo coupling
Bartoli indole synthesis
Boudouard reaction
Cadogan–Sundberg indole synthesis
Diazonium compound
Esterification
Grignard reagent
Haloform reaction
Hegedus indole synthesis
Hurd–Mori 1,2,3-thiadiazole synthesis
Kharasch–Sosnovsky reaction
Knorr pyrrole synthesis
Leimgruber–Batcho indole synthesis
Mukaiyama hydration
Nenitzescu indole synthesis
Oxymercuration reaction
Reed reaction
Schotten–Baumann reaction
Ullmann condensation
Williamson ether synthesis
Yamaguchi esterification
Degradation reactions
Barbier–Wieland degradation
Bergmann degradation
Edman degradation
Emde degradation
Gallagher–Hollander degradation
Hofmann rearrangement
Hooker reaction
Isosaccharinic acid
Marker degradation
Ruff degradation
Strecker degradation
Von Braun amide degradation
Weerman degradation
Wohl degradation
Organic redox reactions
Acyloin condensation
Adkins–Peterson reaction
Akabori amino-acid reaction
Alcohol oxidation
Algar–Flynn–Oyamada reaction
Amide reduction
Andrussow process
Angeli–Rimini reaction
Aromatization
Autoxidation
Baeyer–Villiger oxidation
Barton–McCombie deoxygenation
Bechamp reduction
Benkeser reaction
Bergmann degradation
Birch reduction
Bohn–Schmidt reaction
Bosch reaction
Bouveault–Blanc reduction
Boyland–Sims oxidation
Cannizzaro reaction
Carbonyl reduction
Clemmensen reduction
Collins oxidation
Corey–Itsuno reduction
Corey–Kim oxidation
Corey–Winter olefin synthesis
Criegee oxidation
Dakin oxidation
Davis oxidation
Deoxygenation
Dess–Martin oxidation
DNA oxidation
Elbs persulfate oxidation
Emde degradation
Eschweiler–Clarke reaction
Étard reaction
Fischer–Tropsch process
Fleming–Tamao oxidation
Fukuyama reduction
Ganem oxidation
Glycol cleavage
Griesbaum coozonolysis
Grundmann aldehyde synthesis
Haloform reaction
Hydrogenation
Hydrogenolysis
Hydroxylation
Jones oxidation
Kiliani–Fischer synthesis
Kolbe electrolysis
Kornblum oxidation
Kornblum–DeLaMare rearrangement
Leuckart reaction
Ley oxidation
Lindgren oxidation
Lipid peroxidation
Lombardo methylenation
Luche reduction
Markó–Lam deoxygenation
McFadyen–Stevens reaction
Meerwein–Ponndorf–Verley reduction
Methionine sulfoxide
Miyaura borylation
Mozingo reduction
Noyori asymmetric hydrogenation
Omega oxidation
Oppenauer oxidation
Oxygen rebound mechanism
Ozonolysis
Parikh–Doering oxidation
Pinnick oxidation
Prévost reaction
Reduction of nitro compounds
Reductive amination
Riley oxidation
Rosenmund reduction
Rubottom oxidation
Sabatier reaction
Sarett oxidation
Selenoxide elimination
Shapiro reaction
Sharpless asymmetric dihydroxylation
Epoxidation of allylic alcohols
Sharpless epoxidation
Sharpless oxyamination
Stahl oxidation
Staudinger reaction
Stephen aldehyde synthesis
Swern oxidation
Transfer hydrogenation
Wacker process
Wharton reaction
Whiting reaction
Wohl–Aue reaction
Wolff–Kishner reduction
Wolffenstein–Böters reaction
Zinin reaction
Rearrangement reactions
1,2-rearrangement
1,2-Wittig rearrangement
2,3-sigmatropic rearrangement
2,3-Wittig rearrangement
Achmatowicz reaction
Alkyne zipper reaction
Allen–Millar–Trippett rearrangement
Allylic rearrangement
Alpha-ketol rearrangement
Amadori rearrangement
Arndt–Eistert reaction
Aza-Cope rearrangement
Baker–Venkataraman rearrangement
Bamberger rearrangement
Banert cascade
Beckmann rearrangement
Benzilic acid rearrangement
Bergman cyclization
Bergmann degradation
Boekelheide reaction
Brook rearrangement
Buchner ring expansion
Carroll rearrangement
Chan rearrangement
Claisen rearrangement
Cope rearrangement
Corey–Fuchs reaction
Cornforth rearrangement
Criegee rearrangement
Curtius rearrangement
Demjanov rearrangement
Di-π-methane rearrangement
Dimroth rearrangement
Divinylcyclopropane-cycloheptadiene rearrangement
Dowd–Beckwith ring-expansion reaction
Electrocyclic reaction
Ene reaction
Enyne metathesis
Favorskii reaction
Favorskii rearrangement
Ferrier carbocyclization
Ferrier rearrangement
Fischer–Hepp rearrangement
Fries rearrangement
Fritsch–Buttenberg–Wiechell rearrangement
Gabriel–Colman rearrangement
Group transfer reaction
Halogen dance rearrangement
Hayashi rearrangement
Hofmann rearrangement
Hofmann–Martius rearrangement
Ireland–Claisen rearrangement
Jacobsen rearrangement
Kornblum–DeLaMare rearrangement
Kowalski ester homologation
Lobry de Bruyn–Van Ekenstein transformation
Lossen rearrangement
McFadyen–Stevens reaction
McLafferty rearrangement
Meyer–Schuster rearrangement
Mislow–Evans rearrangement
Mumm rearrangement
Myers allene synthesis
Nazarov cyclization reaction
Neber rearrangement
Newman–Kwart rearrangement
Overman rearrangement
Oxy-Cope rearrangement
Pericyclic reaction
Piancatelli rearrangement
Pinacol rearrangement
Pummerer rearrangement
Ramberg–Bäcklund reaction
Ring expansion and contraction
Ring-closing metathesis
Rupe reaction
Schmidt reaction
Semipinacol rearrangement
Seyferth–Gilbert homologation
Sigmatropic reaction
Skattebøl rearrangement
Smiles rearrangement
Sommelet–Hauser rearrangement
Stevens rearrangement
Stieglitz rearrangement
Thermal rearrangement of aromatic hydrocarbons
Tiffeneau–Demjanov rearrangement
Vinylcyclopropane rearrangement
Wagner–Meerwein rearrangement
Wallach rearrangement
Weerman degradation
Westphalen–Lettré rearrangement
Willgerodt rearrangement
Wolff rearrangement
Ring forming reactions
1,3-Dipolar cycloaddition
Annulation
Azide-alkyne Huisgen cycloaddition
Baeyer–Emmerling indole synthesis
Bartoli indole synthesis
Bergman cyclization
Biginelli reaction
Bischler–Möhlau indole synthesis
Bischler–Napieralski reaction
Blum–Ittah aziridine synthesis
Bobbitt reaction
Bohlmann–Rahtz pyridine synthesis
Borsche–Drechsel cyclization
Bucherer carbazole synthesis
Bucherer–Bergs reaction
Cadogan–Sundberg indole synthesis
Camps quinoline synthesis
Chichibabin pyridine synthesis
Cook–Heilbron thiazole synthesis
Cycloaddition
Darzens reaction
Davis–Beirut reaction
De Kimpe aziridine synthesis
Debus–Radziszewski imidazole synthesis
Dieckmann condensation
Diels–Alder reaction
Feist–Benary synthesis
Ferrario–Ackermann reaction
Fiesselmann thiophene synthesis
Fischer indole synthesis
Fischer oxazole synthesis
Friedländer synthesis
Gewald reaction
Graham reaction
Hantzsch pyridine synthesis
Hegedus indole synthesis
Hemetsberger indole synthesis
Hofmann–Löffler reaction
Hurd–Mori 1,2,3-thiadiazole synthesis
Iodolactonization
Isay reaction
Jacobsen epoxidation
Johnson–Corey–Chaykovsky reaction
Knorr pyrrole synthesis
Knorr quinoline synthesis
Kröhnke pyridine synthesis
Kulinkovich reaction
Larock indole synthesis
Madelung synthesis
Nazarov cyclization reaction
Nenitzescu indole synthesis
Niementowski quinazoline synthesis
Niementowski quinoline synthesis
Paal–Knorr synthesis
Paternò–Büchi reaction
Pechmann condensation
Petrenko-Kritschenko piperidone synthesis
Pictet–Spengler reaction
Pomeranz–Fritsch reaction
Prilezhaev reaction
Pschorr cyclization
Reissert indole synthesis
Ring-closing metathesis
Robinson annulation
Sharpless epoxidation
Simmons–Smith reaction
Skraup reaction
Urech hydantoin synthesis
Van Leusen reaction
Wenker synthesis
Cycloaddition
1,3-Dipolar cycloaddition
4+4 Photocycloaddition
(4+3) cycloaddition
6+4 Cycloaddition
Alkyne trimerisation
Aza-Diels–Alder reaction
Azide-alkyne Huisgen cycloaddition
Bradsher cycloaddition
Cheletropic reaction
Conia-ene reaction
Cyclopropanation
Diazoalkane 1,3-dipolar cycloaddition
Diels–Alder reaction
Enone–alkene cycloadditions
Hexadehydro Diels–Alder reaction
Intramolecular Diels–Alder cycloaddition
Inverse electron-demand Diels–Alder reaction
Ketene cycloaddition
McCormack reaction
Metal-centered cycloaddition reactions
Nitrone-olefin (3+2) cycloaddition
Oxo-Diels–Alder reaction
Ozonolysis
Pauson–Khand reaction
Povarov reaction
Prato reaction
Retro-Diels–Alder reaction
Staudinger synthesis
Trimethylenemethane cycloaddition
Vinylcyclopropane (5+2) cycloaddition
Wagner-Jauregg reaction
Heterocycle forming reactions
Algar–Flynn–Oyamada reaction
Allan–Robinson reaction
Auwers synthesis
Bamberger triazine synthesis
Banert cascade
Barton–Zard reaction
Bernthsen acridine synthesis
Bischler–Napieralski reaction
Bobbitt reaction
Boger pyridine synthesis
Borsche–Drechsel cyclization
Bucherer carbazole synthesis
Bucherer–Bergs reaction
Chichibabin pyridine synthesis
Cook–Heilbron thiazole synthesis
Diazoalkane 1,3-dipolar cycloaddition
Einhorn–Brunner reaction
Erlenmeyer–Plöchl azlactone and amino-acid synthesis