Câu 2 Trang 100 SGK Đại Số Và Giải Tích 11 Nâng Cao - Tìm đáp án
Có thể bạn quan tâm
- Trang chủ
- Lớp 11
- Toán Nâng Cao
- Toán học
- Chương III. Dãy số. Cấp số cộng và cấp số nhân
- Bài 1. Phương pháp quy nạp toán học
Chứng minh rằng
Đề bài
Chứng minh rằng với mọi số nguyên dương n, ta luôn có đẳng thức :
\({2^2} + {4^2} + ... + {\left( {2n} \right)^2} = {{2n\left( {n + 1} \right)\left( {2n + 1} \right)} \over 3}\)
Lời giải chi tiết
+) Với \(n = 1\) ta có \({2^2} = {{2.2.3} \over 3}\) (đúng).
Vậy (1) đúng với \(n = 1\)
+) Giả sử (1) đúng với \(n = k\), tức là ta có :
\({2^2} + {4^2} + ... + {\left( {2k} \right)^2} = {{2k\left( {k + 1} \right)\left( {2k + 1} \right)} \over 3}\)
+) Ta chứng minh (1) đúng với \(n = k + 1\), tức là phải chứng minh :
\({2^2} + {4^2} + ... + {\left( {2k} \right)^2} + {\left( {2k + 2} \right)^2} = {{2\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)} \over 3}\)
Thật vậy, từ giả thiết quy nạp ta có :
\(\eqalign{& {2^2} + {4^2} + ... + {\left( {2k} \right)^2} + {\left( {2k + 2} \right)^2} \cr & = {{2k\left( {k + 1} \right)\left( {2k + 1} \right)} \over 3} + {\left( {2k + 2} \right)^2} \cr & = {{2\left( {k + 1} \right)\left( {2{k^2}+k+ 6k + 6} \right)} \over 3} \cr & = {{2\left( {k + 1} \right)\left[ {2k\left( {k + 2} \right) + 3\left( {k + 2} \right)} \right]} \over 3} \cr & = {{2\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)} \over 3} \cr} \)
Vậy (1) đúng với \(n = k + 1\) do đó (1) đúng với mọi \(n \in\mathbb N^*\)
Mẹo Tìm đáp án nhanh nhất Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 2 trang 100 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"
Bài giải tiếp theo
Câu 3 trang 100 SGK Đại số và Giải tích 11 Nâng cao Câu 4 trang 100 SGK Đại số và Giải tích 11 Nâng cao Câu 5 trang 100 SGK Đại số và Giải tích 11 Nâng cao Câu 6 trang 100 SGK Đại số và Giải tích 11 Nâng cao Câu 7 trang 100 SGK Đại số và Giải tích 11 Nâng cao Câu 8 trang 100 SGK Đại số và Giải tích 11 Nâng caoTải sách tham khảo
Xem thêmBài tập có đáp án chi tiết về chứng minh, tính giá trị của biểu thức của nhị thức Newton phần 2
Tải về · 196Bài tập có đáp án chi tiết về dãy số và cấp số môn toán lớp 11 năm 2009
Tải về · 267Tuyển tập các bài toán có đáp án về đạo hàm các hàm số lượng giác lớp 11 phần 3
Tải về · 206Bài 5. Bài tập có đáp án chi tiết về phép đối xứng tâm
Tải về · 227Đề khảo sát chất lượng học kì 2 môn Toán lớp 11 năm 2016 THPT kiên lương mã 817
Tải về · 189Bài 16. Bài tập có đáp án chi tiết về đường thẳng và mặt phẳng song song
Tải về · 302Ebook đi tìm công thức tổng quát dãy số của thầy trần duy sơn
Tải về · 248Đề kiểm tra ĐSGT 11 chương 1 năm 2019 - 2020 trường Tân Lược - Vĩnh Long
Tải về · 366Bài giải liên quan
Câu 1 trang 100 SGK Đại số và Giải tích 11 Nâng cao Câu 2 trang 100 SGK Đại số và Giải tích 11 Nâng cao Câu 3 trang 100 SGK Đại số và Giải tích 11 Nâng cao Câu 4 trang 100 SGK Đại số và Giải tích 11 Nâng cao Câu 5 trang 100 SGK Đại số và Giải tích 11 Nâng cao Câu 6 trang 100 SGK Đại số và Giải tích 11 Nâng cao Câu 7 trang 100 SGK Đại số và Giải tích 11 Nâng cao Câu 8 trang 100 SGK Đại số và Giải tích 11 Nâng caoBài học liên quan
Bài 1. Phương pháp quy nạp toán học Bài 2. Dãy số Bài 3. Cấp số cộng Bài 4. Cấp số nhân Câu hỏi và bài tập ôn tập chương III Bài tập trắc nghiệm khách quan - Chương III. Dãy số. Cấp số cộng và cấp số nhân - Toán 11 Nâng caoTừ khóa phổ biến
Hỏi bàiTừ khóa » Giải Toán 11 Nâng Cao đại Số Trang 100
-
Câu 1 Trang 100 SGK Đại Số Và Giải Tích 11 Nâng Cao
-
Bài 1 (trang 100 SGK Đại Số Và Giải Tích 11 Nâng Cao)
-
Câu 1 Trang 100 SGK Đại Số Và Giải Tích 11 Nâng Cao
-
Trang 100 Sgk Đại Số Và Giải Tích 11 Nâng Cao - Haylamdo
-
Bài 1 Trang 100 Sgk Đại Số Và Giải Tích 11 Nâng Cao - Top Lời Giải
-
Giải Bài 2 Trang 100 - SGK Đại Số Và Giải Tích Lớp 11 Nâng Cao
-
Câu 7 Trang 100 SGK Đại Số Và Giải Tích 11 Nâng Cao
-
Câu 3 Trang 100 SGK Đại Số Và Giải Tích 11 Nâng Cao, Chứng Minh ...
-
Câu 2 Trang 100 SGK Đại Số Và Giải Tích 11 Nâng Cao - CungHocVui
-
Bài 2 Trang 100 Sgk Đại Số Và Giải Tích 11 Nâng Cao
-
Giải Câu 1 Trang 100 SGK Đại Số Và Giải Tích 11 Nâng Cao
-
Giải Toán 11 SGK Nâng Cao Chương 3 Bài 1 Phương Pháp Quy Nạp ...
-
Câu 5 Trang 100 SGK Đại Số Và Giải Tích 11 Nâng Cao
-
Bài 1 Trang 100 Sgk Đại Số Và Giải Tích 11 Nâng Cao