Cho Hàm Số F(x) Có đạo Hàm Fprime(x)=x(1-x)2(3-x)3(x-2)4 Với Mọi X ...
Có thể bạn quan tâm
Tạo tài khoản Doctailieu
Để sử dụng đầy đủ tính năng và tham gia cộng đồng của chúng tôi Tạo tài khoảnTạo tài khoản với Facebook Google AppleKhi bấm tạo tài khoản bạn đã đồng ý với quy định của tòa soạnLấy lại mật khẩuNhập Email của bạn để lấy lại mật khẩu Lấy lại mật khẩu Trang chủ Trắc nghiệm Luyện Thi THPTTrắc nghiệm môn Toán Luyện Thi THPTCâu hỏi Đáp án và lời giải
Câu Hỏi:
Cho hàm số $f(x)$ có đạo hàm $f^{\prime}(x)=x(1-x)^{2}(3-x)^{3}(x-2)^{4}$ với mọi $x \in \mathbb{R}$. . Điểm cực tiểu của hàm số đã cho là A. $x=2$ B. $x=3$ C. $x=0$ D. $x=1$ Câu hỏi trong đề: Trắc nghiệm tìm cực trị của hàm số khi biết y, y’Đáp án và lời giải
đáp án đúng: CTa có $f^{\prime}(x)=x(1-x)^{2}(3-x)^{3}(x-2)^{4} \Rightarrow f^{\prime}(x)=0 \Leftrightarrow\left[\begin{array}{l}x=0 \\ x=1 \\ x=2 \\ x=3\end{array}\right.$ Bảng xét dấu đạo hàm Suy ra hàm số $f(x)$ Sđạt cực tiểu tại $x=0$
Điểm cực tiểu của đồ thị hàm số $y=-x^{3}+x^{2}+5 x-5$ là
$y^{\prime}=-3 x^{2}+2 x+5=0 \Leftrightarrow\left[\begin{array}{l}x=-1 \\ x=\frac{5}{3}\end{array}\right.$ $y^{\prime \prime}=-6 x+2$ Ta có: $y^{\prime \prime}(-1)=8>0 \Rightarrow$ Hàm số đạt cực tiểu tại $x=-1 ; y_{C T}=y(-1)=-8$
Hàm số $y=f(x)$ có đạo hàm $f^{\prime}(x)=(x-1)(x-2) \ldots(x-2019), \forall x \in R$ Hàm số $y=f(x)$ có tất cả bao nhiêu điểm cực tiểu?
Ta có:$f^{\prime}(x)=(x-1)(x-2) \ldots(x-2019)=0 \Leftrightarrow\left[\begin{array}{l}x=1 \\ x=2 \\ \ldots \ldots \\ x=2019\end{array}\right.$ $f^{\prime}(x)=0$ có 2019 nghiệm bội lẻ và hệ số a dương nên có 1010 cực tiểu.
Điểm cực tiểu của hàm số $y=-x^{3}+3 x+4$ là:
Điểm cực tiểu của hàm số $y=-x^{3}+3 x+4$ là $x=-1$
Đồ thị hàm số $y = {x^4} - 3{x^2} + ax + b$ có điểm cực tiểu $A\left( {2; - 2} \right)$. Tìm tổng $\left( {a + b} \right).$
Ta có $y' = 4{x^3} - 6x + a$ và $y'' = 12{x^2} - 6.$ Do $A\left( {2; - 2} \right)$ là điểm cực tiểu của đồ thị hàm số nên $\left\{ \begin{array}{l} y'\left( 2 \right) = 0\\ y''\left( 2 \right) > 0\\ y\left( 2 \right) = - 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
Cho hàm số $y=-x^{3}+3 m x^{2}-3 m-1$ ( $m$ là tham số). Với giá trị nào của $m$ thì đồ thị hàm số có điểm cực đại và điểm cực tiểu đối xứng với nhau qua đường thẳng d: $x+8 y-74=0$
Đồ thị hàm số $y=-x^{3}+3 x$ có điểm cực tiểu là:
Ta có +) $y^{\prime}=-3 x^{2}+3 ; y^{\prime}=0 \Leftrightarrow\left[\begin{array}{l}x=1 \\ x=-1\end{array}\right.$+) $y^{\prime \prime}=-6 x$ $\square y^{\prime \prime}(1)=-60 \Rightarrow$ hàm số đạt cực tiểu tại $x=-1$ và điểm cực tiểu là $(-1 ;-2)$
Điểm cực tiểu của hàm số $y=x^4+4x^2+2$ là
Điểm cực tiểu của hàm số $y=x^4+4x^2+2$ là 0 Báo đáp án sai Facebook twitter
các câu hỏi khác
Bài toán cực trị của số phức với các dạng câu hỏi quen thuộc
Đáp án đề thi Toán mã đề 109 THPT Quốc Gia 2021
Đáp án đề thi Toán mã đề 101 THPT Quốc Gia 2021
Đề minh họa 2021 môn Toán kỳ thi tốt nghiệp THPT Quốc Gia (có đáp án)
Đề luyện thi tốt nghiệp THPT môn Toán số 11 có đáp án
Đề đánh giá năng lực ĐHQG-HCM năm 2021 phần 2 (đề mẫu)
Mới cập nhật
XChúc mừng!!!Đáp án bạn đưa ra hoàn toàn chính xác!Xem lời giải×Từ khóa » đạo Hàm Của X2/4
-
Tìm Đạo Hàm - D/dx (x^2)/4 | Mathway
-
Tìm đạo Hàm Của Các Hàm Số Sau Y = X^4 / 2 - Khóa Học
-
Đạo Hàm Của Hàm Số \(y = \sqrt {{x^2} - 4{x^3}} \) Là?
-
Tính đạo Hàm Của Hàm Số Sau: (y = (x^4) - 3(x^2) + 2x - 1 )
-
Cho Hàm Số F( X )=x^2( X^2-1 )( X^2-4 )( X^2-9 )( X^2-16 ) Hỏi Phương
-
Tính đạo Hàm Của Hàm Số Y=4^x^2+x+1...
-
Đạo Hàm Của Hàm Số F(x)= (x^2+1)^4 Tại điểm X = -1 Là:...
-
Câu Hỏi: Tính đạo Hàm Của Hàm Số Y=(3−x^2)^(−4/3) Trên Khoảng
-
Cho Hàm Số Y= ( 4-x^2)^ 3 Tính Y''( 1) được Kết Quả Là 18
-
F( X ) = X2 -4x | Xem Lời Giải Tại QANDA
-
1 ) ( X 2 − 4 ) ( X 2 − 9 ) - . Đồ Thị Hàm Số Y=f′(x) - Diễn đàn Toán Học
-
Cho Hàm Số F(x)=x/√(x^2+4). Họ Tất Cả Các Nguyên Hàm Của Hàm Số ...
-
Tính đạo Hàm Của Hàm Số Y= X+1/4^x... - Vietjack.online