Cho Hàm Số F( X ) Có đạo Hàm Và Liên Tục Trên R Thỏa Mãn F( X^3 + 2x ...

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Cho hàm số f( x ) có đạo hàm và liên tục trên R thỏa mãn f( x^3 + 2x - 2 ) = 3x - 1. Tính I = tích Cho hàm số f( x ) có đạo hàm và liên tục trên R thỏa mãn f( x^3 + 2x - 2 ) = 3x - 1. Tính I = tích

Câu hỏi

Nhận biết

Cho hàm số \(f\left( x \right)\) có đạo hàm và liên tục trên \(\mathbb{R}\) thỏa mãn \(f\left( {{x^3} + 2x - 2} \right) = 3x - 1\). Tính \(I = \int\limits_1^{10} {f\left( x \right)} dx\).

A. \(\dfrac{{135}}{4}\). B. \(\dfrac{{125}}{4}\). C. \(\dfrac{{105}}{4}\). D. \(\dfrac{{75}}{4}\).

Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

\(I = \int\limits_1^{10} {f\left( x \right)} dx = \int\limits_1^{10} {f\left( t \right)} dt\)

Đặt \(t = {x^3} + 2x - 2 \Rightarrow dt = \left( {3{x^2} + 2} \right)dx\)

Đổi cận:  \(t = 1 \Rightarrow {x^3} + 2x - 2 = 1 \Leftrightarrow {x^3} + 2x - 3 = 0 \Leftrightarrow x = 1\)

              \(t = 10 \Rightarrow {x^3} + 2x - 2 = 10 \Leftrightarrow {x^3} + 2x - 12 = 0 \Leftrightarrow x = 2\)

 \(\begin{array}{l} \Rightarrow I = \int\limits_1^2 {f\left( {{x^3} + 2x - 2} \right)} .\left( {3{x^2} + 2} \right)dx = \int\limits_1^2 {\left( {3x - 1} \right)} .\left( {3{x^2} + 2} \right)dx = \int\limits_1^2 {\left( {9{x^3} - 3{x^2} + 6x - 2} \right)} dx\\\,\,\,\,\,\,\,\,\, = \left. {\left( {\dfrac{9}{4}{x^4} - {x^3} + 3{x^2} - 2x} \right)} \right|_1^2 = \left( {36 - 8 + 12 - 4} \right) - \left( {\dfrac{9}{4} - 1 + 3 - 2} \right) = 36 - \left( {\dfrac{9}{4}} \right) = \dfrac{{135}}{4}\end{array}\)

Chọn: A

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • câu 2 

    câu 2 

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Nguyên Hàm Của 2x+3/x^2+3x+4