Cho Hàm Số \(f(x) Xác định Và Liên Tục Trên đoạn [0;3]. - Hoc247

YOMEDIA NONE Cho hàm số \(f(x) xác định và liên tục trên đoạn [0;3]. ADMICRO
  • Câu hỏi:

    Cho hàm số \(f(x)\) xác định và liên tục trên đoạn [0;3]. Nếu \(\int\limits_0^3 {f\left( x \right)dx} = 2\) thì tích phân \(\int\limits_0^3 {\left[ {x - 2f\left( x \right)} \right]dx} \) có giá trị bằng:

    • A. 7
    • B. \(\frac{5}{2}\)
    • C. 5
    • D. \(\frac{1}{2}\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 81819

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • Đề thi HK2 môn Toán 12 năm 2018 - 2019 Trường THPT Lý Thái Tổ - Bắc Ninh

    50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Tích phân \(\int\limits_3^4 {\frac{{x + 1}}{{x - 2}}dx}  = a + b\ln 2,\) với \(a, b\) là các số nguyên.
  • Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):\,\,3x + 2y - z + 7 = 0.
  • Số nghiệm của phương trình \({2^{2{x^2} - 7x + 5}} = 1\) là 2
  • Trong không gian Oxyz, cho hai điểm \(C\left( {1; - 3;5} \right),\,D\left( { - 7;9; - 5} \right)\).
  • Cho \({\log _2}5 = a.\) Khi đó \({\log _4}500\) tính theo \(a\) là:
  • Cho hàm số \(f(x) xác định và liên tục trên đoạn [0;3].
  • Số nghiệm của phương trình \({\log _3}\left( {{x^2} - 6} \right) = {\log _3}\left( {x - 2} \right) + 1\) là
  • Rút gọn biểu thức \({a^{\sqrt 2 }}{\left( {\frac{1}{a}} \right)^{\sqrt 2  - 1}},\,\,\left( {a > 0} \right)\), ta được:
  • Tìm m để hàm số \(y = m{x^3} + 3{x^2} + 12x + 2\) đạt cực đại tại x = 2
  • Cho hàm số \(y = \frac{{{x^4}}}{4} + {x^3} - 4x + 1\). Nhận xét nào sau đây là sai: Hàm số đạt cực đại tại x = - 2
  • Tìm m để hàm số \(y = \frac{{x - m}}{{x + 1}}\) đồng biến trên từng khoảng xác định của chúng
  • Số đường tiệm cận của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 3}  - 2}}{{{x^2} - 1}}\)
  • Cho số phức \(z = 2018 + 2019i\). Số phức liên hợp của số phức z có điểm biểu diễn hình học là:
  • Nguyên hàm của hàm số \(f\left( x \right) = {\left( {1 - 2x} \right)^5}\) là:
  • Thể tích V của khối chóp có diện tích đáy B và chiều cao h là
  • Cho hàm số \(y=f(x)\) có đồ thị như hình bên. Giá trị lớn nhất của hàm số này trên đoạn [- 1;2] bằng:
  • Diện tích S của mặt cầu có bán kính R là:
  • Tìm \(\int {\left( {\cos 6x - \cos 4x} \right)dx} \) là:
  • Tích các nghiệm của phương trình: \({\left( {2 + \sqrt 3 } \right)^x} + {\left( {2 - \sqrt 3 } \right)^x} = 14\) là:
  • Cho hình nón đỉnh O có góc ở đỉnh bằng \(120^0\) đường sinh \(l=2a\). Diện tích xung quanh của hình nón bằng:
  • Trong không gian Oxyz, cho tam giác ABC với \(A\left( {1;2;3} \right),\,B\left( {2;1;3} \right),\,C\left( {3;2;1} \right)\).
  • Trong không gian Oxyz, cho véc tơ \(\overrightarrow u  = 2\overrightarrow i  - 3\overrightarrow k \).
  • Cho các mệnh đề như sau:1) Tứ diện luôn nội tiếp trong một mặt cầu.
  • Trong không gian Oxyz, cho đường thẳng \(d:\,\frac{{x - 1}}{2} = \frac{{y + 3}}{1} = \frac{{z - 2}}{{ - 1}}\).
  • Cho tích phân \(\int\limits_0^1 {\sqrt[3]{{1 - x}}} dx\), với cách đặt \(t = \sqrt[3]{{1 - x}}\) thì tích phân đã cho bằng với t
  • Tính thể tích khối tròn xoay tạo nên do quay quanh trục Ox hình phẳng giới hạn bởi các đường \(y=1-x^2, y=0, x=0\) 
  • Cho hình chóp S.ABC có đáy là tam giác đều cạnh \(2a\), cạnh bên \(SA = a\sqrt 3 \) và vuông góc với mặt phẳng đáy. Tính thể tích của khối chóp S.ABC
  • Đường cong trong hình vẽ bên là đồ thị của hàm số nào sau đây? \(y = {x^3} - 2x + 1\)
  • Nghiệm bất phương trình \({\left( {\frac{4}{3}} \right)^{x - 1}} < {\left( {0,75} \right)^{2x - 1}}\) là:
  • Nếu \(\int\limits_0^1 {f\left( t \right)dt}  = 5\) và \(\int\limits_2^1 {f\left( u \right)du}  = 2\) thì \(\int\limits_0^2 {f\
  • Cho \(\int\limits_0^1 {\ln \left( {x + 1} \right)dx}  = a + \ln b,\) với \(a, b\) là các số nguyên. Giá trị \(S=a.b\) là:
  • Tìm phần ảo của số phức z thỏa mãn \({\left( {2 + i} \right)^2}z + 3 - 4i = \frac{4}{{1 + i}}.\)
  • Đồ thị hàm số nào sau đây không có tiệm cận đứng:
  • Hàm số \(y = \frac{1}{{1 - \ln x}}\) có tập xác định là :
  • Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):\,\,2x + 2y - z + 9 = 0\) và đường thẳng \(\Delta\) có phương tr
  • Cho lăng trụ đứng ABC.ABC có đáy ABC là tam giác vuông cân tại A với \(BC = 2a\sqrt 2 .
  • Trong không gian Oxyz, cho mặt phẳng \(\left( Q \right):\,x - 2y + 2z + 2019 = 0\) và đường thẳng d có phương trình: \(
  • Tìm m để phương trình \({\log _2}\left( {{4^x} - m} \right) = x + 1\) có đúng 2 nghiệm phân biệt.
  • Trong không gian Oxyz, cho tứ diện OABC vớiO là gốc tọa độ, \(A\left( {2;0;0} \right),B\left( {0;4;0} \right),C\left( {0
  • Cho số phức \(z = a + bi,\,\left( {a,b \in R} \right).\) Khi đó số \(\frac{1}{2}\left( {z + \overline z } \right)\) là:
  • Trong không gian Oxyz, cho phương trình \({x^2} + {y^2} + {z^2} - 2\left( {m + 1} \right)y + 4\left( {m + 2} \right)z + 6{m^2} = 0\) tro
  • Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh \(2a\) có \(\widehat {ADC} = {60^0}.
  • Giả  sử M là điểm trên mặt phẳng phức biểu diễn số phức z.
  • Cho tứ diện ABCD có hai mặt ABC, ABD là các tam giác đều cạnh \(2a\) và nằm trong hai mặt phẳng vuông góc với nhau
  • Có bao nhiêu số phức thỏa mãn điều kiện \({z^2} + \left| z \right| = 0.\)
  • Cho hàm số (f(x)) liên tục trên R và thỏa mãn (sqrt {1 + {f^2}left( x ight)}  = fleft( x ight)fleft( x ight)sq
  • Một bác nông dân cần xây dựng một hố ga có nắp dạng hình trụ có thể tích \(4\pi \,\left( {{m^3}} \right).
  • Cho hình chữ nhật ABCD có \(AB = a;\,AC = a\sqrt 3 .
  • Cho số phức z thỏa mãn \(\left| {z - 3 + 3i} \right| = 2\). Khi đó giá trị lớn nhất của \(\left| {z - i} \right|\) là:
  • Tìm độ dài lớn nhất của đoạn thẳng MN biết M, N là hai điểm lần lượt nằm trên mặt cầu (S) và mặt phẳng (P) sao cho véc tơ \(\overrightarrow {MN} \) cùng phương với véc tơ \(\overrightarrow u = \left( {1;0;1} \right)\)
ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Hình học 12 Chương 3

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn Ai đã đặt tên cho dòng sông

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 9 Lớp 12 Deserts

Tiếng Anh 12 mới Unit 4

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Ôn tập Vật lý 12 Chương 3

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Ôn tập Hóa học 12 Chương 4

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Ôn tập Sinh 12 Chương 1 - Tiến hóa

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 3 Lịch Sử VN

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Đề cương HK1 lớp 12

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Hóa

Video ôn thi THPT QG Tiếng Anh

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Người lái đò sông Đà

Đất Nước- Nguyễn Khoa Điềm

Quá trình văn học và phong cách văn học

Đàn ghi ta của Lor-ca

Tây Tiến

Ai đã đặt tên cho dòng sông

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Hàm Số Liên Tục Trên Khoảng (0 3)