Cho Hàm Số (fleft( X Right)) Xác định Và Có đạo Hàm Trên (mathbb{R ...
Có thể bạn quan tâm
A. \(\left( { – \infty ; – 1} \right)\).
B. \(\left( {1; + \infty } \right)\).
C. \(\left( { – \infty ; – 2} \right)\).
D. \(\left( { – 1;1} \right)\).
LỜI GIẢI CHI TIẾT
Ta có: \(g’\left( x \right) = \frac{{{{\left( {\sqrt {{x^2} + 1} – x} \right)}^\prime }}}{{\sqrt {{x^2} + 1} – x}}.f’\left( {\ln \left( {\sqrt {{x^2} + 1} – x} \right)} \right) = \frac{{ – 1}}{{\sqrt {{x^2} + 1} }}.f’\left( {\ln \left( {\sqrt {{x^2} + 1} – x} \right)} \right)\).
\(g’\left( x \right) = 0 \Leftrightarrow f’\left( {\ln \left( {\sqrt {{x^2} + 1} – x} \right)} \right) = 0\).
Từ đồ thị, suy ra: \(g’\left( x \right) = 0 \Rightarrow \left[ \begin{array}{l}x = – 1\\x = 1\end{array} \right.\)\( \Rightarrow \)\(\left[ \begin{array}{l}g’\left( { – 1} \right) = 0\\g’\left( 1 \right) = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}f’\left( {\ln \left( {\sqrt 2 + 1} \right)} \right) = 0\\f’\left( {\ln \left( {\sqrt 2 – 1} \right)} \right) = 0\end{array} \right.\).
Suy ra, \(f’\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \ln \left( {\sqrt 2 + 1} \right)\\x = \ln \left( {\sqrt 2 – 1} \right)\end{array} \right.\) và \(g’\left( 0 \right) = \frac{{ – 1}}{1}.f’\left( {\ln \left( {\sqrt {0 + 1} – 0} \right)} \right) = – f’\left( 0 \right) < 0\)\( \Rightarrow f’\left( 0 \right) > 0\).
Xét hàm số \(y = f\left( {\frac{x}{2}} \right)\), \(y’ = \frac{1}{2}.f’\left( {\frac{x}{2}} \right)\), \(f’\left( {\frac{x}{2}} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} = \ln \left( {\sqrt 2 + 1} \right)\\\frac{x}{2} = \ln \left( {\sqrt 2 – 1} \right)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2\ln \left( {\sqrt 2 + 1} \right) = \ln \left( {3 + 2\sqrt 2 } \right)\\x = 2\ln \left( {\sqrt 2 – 1} \right) = \ln \left( {3 – 2\sqrt 2 } \right)\end{array} \right.\).
Ta có: bảng biến thiêu của hàm số \(y = f\left( {\frac{x}{2}} \right)\)
Suy ra hàm số \(y = f\left( {\frac{x}{2}} \right)\) đồng biến trên \(\left( {\ln \left( {3 – 2\sqrt 2 } \right);\ln \left( {3 + 2\sqrt 2 } \right)} \right)\).
Mà \(\left( { – 1;1} \right) \subset \left( {\ln \left( {3 – 2\sqrt 2 } \right);\ln \left( {3 + 2\sqrt 2 } \right)} \right)\), suy ra hàm số \(y = f\left( {\frac{x}{2}} \right)\) đồng biến trên \(\left( { – 1;1} \right)\).
======= Thuộc mục: Đơn điệu hàm hợp VDCTừ khóa » Hàm Số Ln đồng Biến Trên Khoảng Nào
-
Hàm Số Y=x.lnx đồng Biến Trên Khoảng Nào Trong Các Khoảng Sau đây?
-
[LỜI GIẢI] Hàm Số Y = Xln X đồng Biến Trên Khoảng? - Tự Học 365
-
Cho Hàm Số $y = \ln X.$ Khẳng định Nào Sau đây Là Khẳng định Sai ...
-
Hàm Số Y=x.lnx đồng Biến Trên Khoảng - Khóa Học
-
Cho Hàm Số Y = Ln X. Khẳng định Nào Sau đây Là Khẳng định Sai? A ...
-
[Mức độ 1] Hàm Số Y=xlnx đồng Biến Trên Khoảng | Cungthi.online
-
Hàm Số $y=x.\ln X$ đồng Biến Trên Khoảng Nào Trong Các ...
-
Hàm Số \(y=\ln đồng Biến Trên Tập Nào? - Trắc Nghiệm Online
-
Hàm Số \(f(x) = \frac{x}{{\ln X}}\) đồng Biến Trong Khoảng Nào Sau đây?
-
Cho Hàm Số \(y = \frac{{\ln X – 4}}{{\ln X – 2m}}\) Với M Là Tham Số. Gọi ...
-
Cho Hàm Số (y = X - Ln ( (1 + X) ) ). Khẳng định Nào Sau đây đúng?
-
Hàm Số \(y = \ln (x + 2) + \frac{3}{{x + 2}}\) đồng Biến Trên Khoảng Nào?
-
Cho Hàm Số Y = Ln X. Khẳng định Nào Sau đây Là Khẳng định Sai?...