Cho Hàm Số Y=f( X ). Hàm Số Y=f'( X ) Có đồ Thị Như Hình Bên. Hàm Số ...

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Cho hàm số y=f( x ). Hàm số y=f'( x ) có đồ thị như hình bên. Hàm số y=f( x-x^2 ) nghịch biến trên k

Câu hỏi

Nhận biết

Cho hàm số \(y=f\left( x \right).\) Hàm số \(y={f}'\left( x \right)\) có đồ thị như hình bên. Hàm số \(y=f\left( x-{{x}^{2}} \right)\) nghịch biến trên khoảng

A.

 \(\left( -\,\frac{1}{2};+\,\infty  \right).\)               B.

 \(\left( -\,\frac{3}{2};+\,\infty  \right).\)               C.

 \(\left( -\,\infty ;\frac{3}{2} \right).\)    D.  \(\left( \frac{1}{2};+\,\infty  \right).\)

Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Ta có \(g\left( x \right)=f\left( x-{{x}^{2}} \right)\,\,\xrightarrow{{}}\,\,{g}'\left( x \right)=\left( 1-2x \right).{f}'\left( x-{{x}^{2}} \right);\,\,\forall x\in \mathbb{R}.\)

Xét \(g'\left( x \right) < 0 \Leftrightarrow \left( {1 - 2x} \right).f'\left( {x - {x^2}} \right) < 0 \Leftrightarrow\left[ \begin{array}{l}\left\{ \begin{array}{l}1 - 2x > 0\\f'\left( {x - {x^2}} \right) < 0\end{array} \right.\\\left\{ \begin{array}{l}1 - 2x < 0\\f'\left( {x - {x^2}} \right) > 0\end{array} \right.\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}1 - 2x > 0\\1 < x - {x^2} < 2\end{array} \right.\\\left\{ \begin{array}{l}1 - 2x < 0\\x - {x^2} \in \left( { - \,\infty ;1} \right) \cup \left( {2; + \,\infty } \right)\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x < \frac{1}{2}\\{x^2} - x + 1 < 0\\{x^2} - x + 2 > 0\end{array} \right.\\\left\{ \begin{array}{l}x > \frac{1}{2}\\\left[ \begin{array}{l}{x^2} - x + 1 > 0\\{x^2} - x + 2 < 0\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x < \frac{1}{2}\\VN\\VSN\end{array} \right.\\\left\{ \begin{array}{l}x > \frac{1}{2}\\\left[ \begin{array}{l}VSN\\VN\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow x > \frac{1}{2}.\)

Vậy hàm số \(y=g\left( x \right)\) nghịch biến trên khoảng \(\left( \frac{1}{2};+\,\infty  \right).\)

Chọn D

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Hàm Số Y=f(x^2) Nghịch Biến Trên Khoảng