Cho Hình Bình Hành ABCD. Tổng Các Vectơ A B → A C →... - Hoc24
Có thể bạn quan tâm
HOC24
Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng- Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Lớp học
- Lớp 12
- Lớp 11
- Lớp 10
- Lớp 9
- Lớp 8
- Lớp 7
- Lớp 6
- Lớp 5
- Lớp 4
- Lớp 3
- Lớp 2
- Lớp 1
Môn học
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Đạo đức
- Tự nhiên và xã hội
- Khoa học
- Lịch sử và Địa lý
- Tiếng việt
- Khoa học tự nhiên
- Hoạt động trải nghiệm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Chủ đề / Chương
Bài học
HOC24
Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng - Tất cả
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Câu hỏi
Hủy Xác nhận phù hợp Chọn lớp Tất cả Lớp 12 Lớp 11 Lớp 10 Lớp 9 Lớp 8 Lớp 7 Lớp 6 Lớp 5 Lớp 4 Lớp 3 Lớp 2 Lớp 1 Môn học Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Tiếng anh thí điểm Đạo đức Tự nhiên và xã hội Khoa học Lịch sử và Địa lý Tiếng việt Khoa học tự nhiên Hoạt động trải nghiệm Hoạt động trải nghiệm, hướng nghiệp Giáo dục kinh tế và pháp luật Mới nhất Mới nhất Chưa trả lời Câu hỏi hay
Pham Trong Bach 24 tháng 3 2017 lúc 3:30 Cho hình bình hành ABCD. Tổng các vectơ A B → + A C → + A D → làĐọc tiếpCho hình bình hành ABCD. Tổng các vectơ A B → + A C → + A D → là
![]()
![]()
![]()
![]()
- Truc Thanh
Cho hình bình hành ABCD có tâm là O . Tìm các vectơ từ 5 điểm A B C D O a). Bằng vectơ AB ; OB. b). Có độ dài bằng OB .
Xem chi tiết Lớp 10 Toán Chương 1: VECTƠ 2 0
Gửi Hủy
Nguyễn Việt Lâm CTV Bằng \(\overrightarrow{AB}\) là \(\overrightarrow{DC}\)
Bằng \(\overrightarrow{OB}\) là \(\overrightarrow{DO}\)
Có độ dài bằng OB là \(\overrightarrow{OB};\overrightarrow{BO};\overrightarrow{OD};\overrightarrow{DO}\)
Đúng 1 Bình luận (0)
Gửi Hủy
Ikino Yushinomi a) Bằng vectơ AB :\(\overrightarrow{DC}\)Bằng vectơ OB :\(\overrightarrow{DO}\)b)Có độ dài bằng OB :\(\overrightarrow{OD}, \overrightarrow{DO}, \overrightarrow{BO}\)
Đúng 0 Bình luận (0)
Gửi Hủy
- Pham Trong Bach
Cho hình bình hành ABCD. A B → + A C → + A D → Tổng các vectơ là
A. A C →
B. 2
C . 3
D. 5
Xem chi tiết Lớp 11 Toán 1 0
Gửi Hủy
Cao Minh Tâm 
Gửi Hủy
- Manh Duy
Cho hình bình hành ABCD có O = AC n BD a,Tìm các vectơ khác vectơ O + Cùng phương với vectơ OA + Cùng chiều với vectơ BD b, Tìm các vectơ + bằng với AB + bằng với CO
Xem chi tiết Lớp 10 Toán §1. Các định nghĩa 0 0
Gửi Hủy
- Tiểu Z
Câu 8: Cho hình bình hành ABCD tâm O. Các vectơ khác 0 ngược hướng với OB là
A. BD OD , . B. BD OD BO , , . C. DB DO , . D. BD BO , .
Câu 9: Cho ba điểm A, B, C thẳng hàng, trong đó điểm B nằm giữa hai điểm A và C. Khi đó các cặp vectơ nào sau đây cùng hướng?
A. CB và AB. B. AB và AC. C. AB và CB . D. BA và BC.
Câu 10: Cho một đa giác 1 2 2019 A A A ... có 2019 cạnh. Số vectơ khác 0 có điểm đầu và điểm cuối được tạo thành từ các đỉnh của đa giác
A. 4074342. B. 8148684. C. 4076361. D. 8152722
Xem chi tiết Lớp 10 Toán 0 0
Gửi Hủy
- Bài 4
-
Cho hình bình hành ABCD hai điểm M và N lần lượt là trung điểm của BC và AD. Vẽ điểm E sao cho \(\overrightarrow {CE} = \overrightarrow {AN} \) (hình 1)
a) Tìm tổng của các vectơ:
\(\overrightarrow {NC} \) và \(\overrightarrow {MC} \); \(\overrightarrow {AM} \) và \(\overrightarrow {CD} \); \(\overrightarrow {AD} \) và \(\overrightarrow {NC} \)
b) Tìm các vectơ hiệu:
\(\)\(\overrightarrow {NC} - \overrightarrow {MC} \); \(\overrightarrow {AC} - \overrightarrow {BC} \); \(\overrightarrow {AB} - \overrightarrow {ME} \).
c) Chứng minh \(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {AD} \)

Gửi Hủy
Hà Quang Minh Giáo viên CTVVIP a) Ta có: \(\overrightarrow {CE} = \overrightarrow {AN} \Rightarrow CE//AN\) và \(CE = AN = ND = BM = MC\)
Suy ra \(\overrightarrow {MC} = \overrightarrow {CE} \)
+) \(\overrightarrow {NC} + \overrightarrow {MC} = \overrightarrow {NC} + \overrightarrow {CE} = \overrightarrow {NE} \)
+) ABCD là hình bình hành nên \(\overrightarrow {CD} = \overrightarrow {BA} \)
\(\overrightarrow {AM} + \overrightarrow {CD} = \overrightarrow {AM} + \overrightarrow {BA} = \overrightarrow {BM} \)
+) Ta có \(\overrightarrow {MC} = \overrightarrow {AN} \Rightarrow AMCN\) là hình bình hành nên \(\overrightarrow {NC} = \overrightarrow {AM} \)
\(\overrightarrow {AD} + \overrightarrow {NC} = \overrightarrow {AD} + \overrightarrow {AM} = \overrightarrow {AE} \) (vì AMED là hình bình hành)
b) Ta có:
+) \(\overrightarrow {NC} - \overrightarrow {MC} = \overrightarrow {NC} + \overrightarrow {CM} = \overrightarrow {NM} \)
+) \(\overrightarrow {AC} - \overrightarrow {BC} = \overrightarrow {AC} + \overrightarrow {CB} = \overrightarrow {AB} \)
+) \(\overrightarrow {AB} - \overrightarrow {ME} = \overrightarrow {AB} - \overrightarrow {AD} = \overrightarrow {AB} + \overrightarrow {DA} = \overrightarrow {DB} \)
c) Ta có:
\(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AM} + \overrightarrow {MC} = \overrightarrow {AC} \)
Áp dụng quy tắc hình bình hành vào hình bình hành ABCD ta có
\(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Từ đó suy ra \(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {AD} \) (đpcm)
Đúng 0 Bình luận (0)
Gửi Hủy
- Tuấn Phạm
1)Cho hình bình hành ABCD, xác định các vectơ DA+DC,AB+DA. 2)Cho 5 điểm A, B, C, D, E. Chứng minh rằng: AC-ED+CD+EC-BC = AB 3)Cho hình vuông ABCD, tâm O cạnh bằng a. a) Xác định vecto BA+DA+AC, AB+CA+BC, AB+AC. b) Tính độ dài vecto DA+DC, AB-BC
Xem chi tiết Lớp 10 Toán Câu hỏi của OLM 1 0
Gửi Hủy
Nguyễn Lê Phước Thịnh CTV 1: ABCD là hình bình hành
=>\(\overrightarrow{DA}+\overrightarrow{DC}=\overrightarrow{DB}\)
\(\overrightarrow{AB}+\overrightarrow{DA}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}\)
2: \(\overrightarrow{AC}-\overrightarrow{ED}+\overrightarrow{CD}+\overrightarrow{EC}-\overrightarrow{BC}\)
\(=\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DE}+\overrightarrow{EC}+\overrightarrow{CB}\)
\(=\overrightarrow{AD}+\overrightarrow{DE}+\overrightarrow{EC}+\overrightarrow{CB}\)
\(=\overrightarrow{AE}+\overrightarrow{EC}+\overrightarrow{CB}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{AB}\)
3:
a: \(\overrightarrow{BA}+\overrightarrow{DA}+\overrightarrow{AC}\)
\(=-\overrightarrow{AB}-\overrightarrow{AD}+\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{0}\)
\(\overrightarrow{AB}+\overrightarrow{CA}+\overrightarrow{BC}\)
\(=\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BC}\)
\(=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}\)
Gọi H là trung điểm của BC
Xét ΔABC có AH là đường trung tuyến
nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\cdot\overrightarrow{AH}\)
b: ABCD là hình vuông
=>\(DB^2=DA^2+AB^2\)
=>\(DB^2=a^2+a^2=2a^2\)
=>\(DB=a\sqrt2\)
ABCD là hình vuông
=>\(\overrightarrow{DA}+\overrightarrow{DC}=\overrightarrow{DB}\)
=>\(\left|\overrightarrow{DA}+\overrightarrow{DC}\right|=DB=a\sqrt2\)
\(\overrightarrow{AB}-\overrightarrow{CB}=\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\)
=>\(\left|\overrightarrow{AB}-\overrightarrow{CB}\right|=CA=a\sqrt2\)
Đúng 0 Bình luận (0)
Gửi Hủy
- Nguyễn Duy
Cho hình thang ABCD ( AB // CD ) và điểm M nằm trong hình thang ABCD. Kẻ các hình bình hành MAED, MBFC. Chứng minh hai vectơ EF và vectơ AB cùng phương.
Xem chi tiết Lớp 10 Toán §2. Tổng và hiệu của hai vectơ 0 0
Gửi Hủy
- Bài 1.50
Cho hai hình bình hành ABCD và EBEF với A, D, F không thẳng hàng. Dựng các vectơ \(\overrightarrow{EH}\) và \(\overrightarrow{FG}\) bằng vectơ \(\overrightarrow{AD}\). Chứng minh tứ giác CDGH là hình bình hành ?
Xem chi tiết Lớp 10 Toán Ôn tập chương I 1 0
Gửi Hủy
Nguyen Thuy Hoa 
\(\overrightarrow{EH}=\overrightarrow{AD},\overrightarrow{FG}=\overrightarrow{AD}\Rightarrow\overrightarrow{EH}=\overrightarrow{FG}\)
=> Tứ giác FEHG là hình bình hành
=> \(\overrightarrow{GH}=\overrightarrow{FE}\) (1)
Ta có \(\overrightarrow{DC}=\overrightarrow{AB},\overrightarrow{AB}=\overrightarrow{FE}\)
=> \(\overrightarrow{DC}=\overrightarrow{FE}\) (2)
Từ (1) và (2) ta có \(\overrightarrow{GH}=\overrightarrow{DC}\)
Vậy tứ giác GHCD là hình bình hành.
Đúng 0 Bình luận (0)
Gửi Hủy
- Pham Trong Bach
Trong không gian cho hai hình bình hành ABCD và A’B’C’D’ chỉ có chung nhau một điểm A. Chứng minh rằng các vectơ B B ' → , C C ' → , D D ' → đồng phẳng.
Xem chi tiết Lớp 11 Toán 1 0
Gửi Hủy
Cao Minh Tâm 
Ta có: 
Do đó: 

Hệ thức 
biểu thị sự đồng phẳng của ba vectơ B B ' → , C C ' → , D D ' →
Đúng 0 Bình luận (0)
Gửi Hủy Khoá học trên OLM (olm.vn)
- Toán lớp 10 (Kết nối tri thức với cuộc sống)
- Toán lớp 10 (Cánh Diều)
- Toán lớp 10 (Chân trời sáng tạo)
- Ngữ văn lớp 10 (Kết nối tri thức với cuộc sống)
- Ngữ văn lớp 10 (Cánh Diều)
- Ngữ văn lớp 10 (Chân trời sáng tạo)
- Tiếng Anh lớp 10 (i-Learn Smart World)
- Tiếng Anh lớp 10 (Global Success)
- Vật lý lớp 10 (Kết nối tri thức với cuộc sống)
- Vật lý lớp 10 (Cánh diều)
- Hoá học lớp 10 (Kết nối tri thức với cuộc sống)
- Hoá học lớp 10 (Cánh diều)
- Sinh học lớp 10 (Kết nối tri thức với cuộc sống)
- Sinh học lớp 10 (Cánh diều)
- Lịch sử lớp 10 (Kết nối tri thức với cuộc sống)
- Lịch sử lớp 10 (Cánh diều)
- Địa lý lớp 10 (Kết nối tri thức với cuộc sống)
- Địa lý lớp 10 (Cánh diều)
- Giáo dục kinh tế và pháp luật lớp 10 (Kết nối tri thức với cuộc sống)
- Giáo dục kinh tế và pháp luật lớp 10 (Cánh diều)
- Lập trình Python cơ bản
Từ khóa » Cho Hình Bình Hành Abcd Vectơ Ab Bằng
-
[LỜI GIẢI] Cho Hình Bình Hành ABCD Vectơ B C - Tự Học 365
-
Cho Hình Bình Hành ABCD. Vectơ BC→ - AB→ Bằng Vectơ
-
Cho Hình Bình Hành ABCD, Vecto BC-vecto AB Bằng Vecto Nào Dưới ...
-
Cho Hình Bình Hanh ABCD Vecto Nào Trong Các Vecto Sau đây ...
-
Top 15 Cho Hình Bình Hành Abcd Vectơ Ab Bằng
-
Cho Hình Bình Hành ABCD. Tổng Các Vectơ - Khóa Học
-
Cho Hình Bình Hành ABCD .CMR Vectơ AB+vectơ AD ...
-
Cho Hình Bình Hanh ABCD Vecto Nào Trong Các Vecto Sau đây Bằng ...
-
Cho Hình Bình Hành ABCD Vectơ BC Trừ Vectơ AB Bằng
-
Trong Không Gian Cho Hình Bình Hành Abcd Vectơ Ab + Vectơ Ad =
-
Cho Hình Bình Hành (ABCD,) Vectơ Có điểm đầu Và ...
-
Cho Hình Bình Hành ABCD. Tổng Các Vecto AB + AC + AD
-
Cho Hình Bình Hành ABCD. Đẳng Thức Nào Sau đây đúng?
-
[PDF] BÀI 2: TỔNG VÀ HIỆU CỦA HAI VECTƠ I - Havamath