Cho Hình Chóp S.ABCD Có đáy ABCD Là Hình Thang ... - HOC247

YOMEDIA NONE Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \(AB=BC=\frac{1}{2}AD=a\). Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ACD. ADMICRO
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \(AB=BC=\frac{1}{2}AD=a\). Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ACD.

    • A. \({V_{S.ACD}} = \frac{{{a^3}}}{3}\)
    • B. \({V_{S.ACD}} = \frac{{{a^3}}}{2}\)
    • C. \({V_{S.ACD}} = \frac{{{a^3}\sqrt 2 }}{6}\)
    • D. \({V_{S.ACD}} = \frac{{{a^3}\sqrt 3 }}{6}\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta chứng minh được tam giác ACD vuông cân tại C và \(CA=CD=a\sqrt{2}\), suy ra \({{S}_{\Delta ACD}}={{a}^{2}}\)

    Gọi H là trung điểm của AB vì tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy, suy ra \(SH\bot \left( ABCD \right)\) và \(SH=\frac{a\sqrt{3}}{2}\).

    Vậy \({{S}_{S.ACD}}=\frac{{{a}^{3}}\sqrt{3}}{6}\)

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 256510

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Sơn Hà

    50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Gọi P(A) là xác suất của biến cố A. Khi đó
  • Một cấp số cộng có số hạng đầu là u1 = 3, số hạng thứ tám là \({u_8} = 24\). Công sai d của cấp số cộng bằng
  • Tính giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \left( { - 3{x^3} + x + 1} \right)\)
  • Cần phân công ba bạn từ một tổ có 10 bạn để làm trực nhật. Hỏi có bao nhiêu cách phân côg khác nhau
  • Hàm số \(y = \frac{{{x^3}}}{3} - {x^2} + x\) đồng biến trên khoảng nào sau đây?
  • Tìm giá trị nhỏ nhất của hàm số \(y = \frac{{{x^2} - 5}}{{x + 3}}\) trên đoạn [0;2].
  • Đồ thị hàm số \(y = {x^3} - 3{x^2} + 2x - 1\) cắt đồ thị hàm số \(y = {x^2} - 3x + 1\) tại hai điểm phân biệt A, B. Khi đó độ dài AB là bao nhiêu ?
  • Đồ thị của hàm số \(y = {x^3} - 3{x^2}\) có hai điểm cực trị là
  • Đường tiệm cận đứg của đồ thị hàm số \(y = \frac{{x - 1}}{{x + 2}}\) là
  • Cho hàm số \(y=\frac{3x-1}{x-3}\) có đồ thị là (C). Tìm điểm M thuộc đồ thị (C) sao cho khoảng cách từ M đến tiệm cận đứng bằng hai lần khoảng cách từ M đến tiệm cận ngang.
  • Một đại lý xăng dầu cần làm một cái bồn dầu hình trụ bằng tôn có thể tích \(16\pi \,{m^3}\). Tìm bán kính đáy r của hình trụ sao cho hình trụ được làm ra ít tốn nguyên vật liệu nhất.
  • Cho số dương a, biểu thức \(\sqrt a .\sqrt[3]{a}.\sqrt[6]{{{a^5}}}\) viết dưới dạng hữu tỷ là
  • Cho \({\log _2}x = \sqrt 2 \). Giá trị của biểu thức \(P = {\log _2}{x^2} + {\log _{\frac{1}{2}}}{x^3} + {\log _4}x\) bằng
  • Tính đạo hàm của hàm số y = 5x.
  • Phương trình \({3^{2x + 1}} - {4.3^x} + 1 = 0\) có hai nghiệm \({x_1} < {x_2}\), chọn phát biểu đúng.
  • Tìm tập xác định D của hàm số \(y = \log \left( {{x^3} - 3x + 2} \right)\)
  • Đồ thị hình bên của hàm số nào:
  • Phương trình \({4^x} - m{.2^{x + 1}} + 2m = 0\) có hai nghiệm \({x_1},{\rm{ }}{x_2}\) thỏa mãn \({x_1} + {x_2} = 3\) khi
  • Đặt \(a = {\log _3}5;b = lo{g_4}5\). Hãy biểu diễn \({\log _{15}}20\) theo a và b.
  • Cho \(a,b > 0,\,\,a \ne 1,\,\,\alpha \in R\). Khẳng định nào sau đây là sai ?
  • Ông Bách thanh toán tiền mua xe bằng các kỳ khoản năm: 5.000.000 đồng, 6.000.000 đồng, 10.000.000 đồng và 20.000.000 đồng. Kỳ khoản đầu thanh toán 1 năm sau ngày mua. Với lãi suất áp dụng là 8%. Hỏi giá trị chiếc xe ông Bách mua là bao nhiêu ?
  • Tìm nguyên hàm của hàm số \(f\left( x \right) = 2x + 1\).
  • Tìm nguyên hàm của hàm số \(f\left( x \right) = \ln 4x\).
  • Nếu \(f\left( 1 \right)=12,\,\,f'\left( x \right)\) liên tục và \(\int\limits_{1}^{4}{f'\left( x \right)\text{d}x}=17\). Giá trị của \(f\left( 4 \right)\) bằng
  • Tìm a sao cho \(I = \int\limits_0^a {x.{e^{\frac{x}{2}}}d{\rm{x}}} = 4\).
  • Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \frac{{x + 1}}{{x - 2}}\) và các trục tọa độ.
  • Diện tích của hình phẳng giới hạn bởi đồ thị hai hàm số \(y = {x^2} + 2\) và y = 3x là
  • Cho hình phẳng giới hạn bởi các đường \(y = \frac{1}{{1 + \sqrt {4 - 3{\rm{x}}} }},y = 0,x = 0,x = 1\) quay xung quanh trục Ox. Thể tích khối tròn xoay tạo thành bằng
  • Cho hai số phức \({z_1} = 1 + 2i;{z_2} = 2 - 3i\). Tổng của hai số phức là
  • Môđun của số phức \(z = \frac{{\left( {1 + i} \right)\left( {2 - i} \right)}}{{1 + 2i}}\) là
  • Biết \(\bar z = {\left( {\sqrt 2 + i} \right)^2}.\left( {1 - \sqrt 2 i} \right)\). Phần ảo của số phức z là
  • Cho số phức \(z = 1 - \frac{1}{3}i\). Tính số phức \(w = i\bar z + 3z\).
  • Cho ba điểm \(A,\text{ }B,\text{ }M\) lần lượt là điểm biểu diễn của các số phức \(-4,\,\text{ }4i,\,\text{ }x+3i\). Với giá trị thực nào của x thì \(A,\text{ }B,\text{ }M\) thẳng hàng?
  • Cho số phức z thỏa |z| = 3. Biết rằng tập hợp số phức \(w = \bar z + i\) là một đường tròn. Tìm tâm của đường tròn đó.
  • Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật cạnh \(AB = a,AD = a\sqrt 2 \), \(SA \bot \left( {ABCD} \right)\) góc giữa SC và đáy bằng 600. Thể tích hình chóp S.ABCD bằng
  • Khối đa diện đều loại {5;3} có tên gọi là
  • Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \(AB=BC=\frac{1}{2}AD=a\). Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ACD.
  • Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh bằng a. Hình chiếu vuông góc của A’ xuống mặt phẳng (ABC) là trung điểm của AB. Mặt bên (AA’C’C) tạo với đáy một góc bằng 450. Thể tích của khối lăng trụ ABC.A'B'C' bằng
  • Cho hình nón đỉnh S có bán kính đáy \(R=a\sqrt{2}\), góc ở đỉnh bằng \({{60}^{0}}\). Diện tích xung quanh của hình nón bằng
  • Một hình trụ có bán kính đáy R = 70cm, chiều cao hình trụ h = 20cm. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?
  • Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA=BC=a. Cạnh bên SA=2a và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là
  • Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là \(\frac{a}{2}\). Thể tích của khối nón ngoại tiếp hình chóp S.ABC bằng
  • Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - 3y + 4z = 2016\). Véctơ nào sau đây là một véctơ pháp tuyến của mặt phẳng (P) ?
  • Trong khôg gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 8x + 10y - 6z + 49 = 0\).
  • Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 3y + z - 1 = 0\). Tính khoảng cách d từ điểm M(1;2;1) đến mặt phẳng (P).
  • Trong không gian Oxyz, cho hai đường thẳng \(\left( {{d}_{1}} \right):\frac{x+1}{2}=\frac{1-y}{m}=\frac{2-z}{3}\) và \(\left( {{d}_{2}} \right):\frac{x-3}{1}=\frac{y}{1}=\frac{z-1}{1}\). Tìm tất cả giá trị thức của m để \(\left( {{d}_{1}} \right)\bot \left( {{d}_{2}} \right)\)
  • Trong không gian Oxyz, cho điểm \(A\left( -3;2;-3 \right)\) và hai đường thẳng \({{d}_{1}}:\frac{x-1}{1}=\frac{y+2}{1}=\frac{z-3}{-1}\) và \({{d}_{2}}:\frac{x-3}{1}=\frac{y-1}{2}=\frac{z-5}{3}\). Phương trình mặt phẳng chứa d1 và d2 có dạng
  • Trong không gian Oxyz, cho đường thẳng d và mặt phẳng (P) lần lượt có phương trình \(d:\frac{x+3}{2}=\frac{y+1}{1}=\frac{z}{-1},\left( P \right):x-3y+2z+6=0\). Phương trình hình chiếu của đường thẳng d lên mặt phẳng (P) là
  • Trong không gian Oxyz, cho điểm \(I\left( 1;3;-2 \right)\) và đường thẳng \(\Delta :\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\). Phương trình mặt cầu (S) có tâm là điểm I và cắt \(\Delta \) tại hai điểm phân biệt A, B sao cho đoạn thẳng AB có độ dài bằng 4 có phương trình là
  • Phương trình chính tắc của đường thẳng đi qua điểm \(M\left( 1;-1;2 \right)\) và vuông góc với \(mp\left( \beta \right):2\text{x}+y+3\text{z}-19=0\) là
ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Giải tích 12 Chương 3

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn bài Người lái đò sông Đà

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 8 Lớp 12 Life in the future

Tiếng Anh 12 mới Unit 4

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Vật lý 12 Chương 3

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Hoá Học 12 Chương 4

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Ôn tập Sinh 12 Chương 5

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 2 Lịch Sử VN

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Đề cương HK1 lớp 12

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG Tiếng Anh

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG môn Hóa

Video ôn thi THPT QG môn Văn

Sóng- Xuân Quỳnh

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Người lái đò sông Đà

Đất Nước- Nguyễn Khoa Điềm

Đàn ghi ta của Lor-ca

Quá trình văn học và phong cách văn học

Tây Tiến

Ai đã đặt tên cho dòng sông

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Hình Chóp Sabcd Có đáy Abcd Là Hình Thang Vuông Tại A Và B