Cho Hình Chóp Tam Giác đều S.ABC Có độ Dài Cạnh đáy Bằng A, Góc ...

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, góc hợp bở

Câu hỏi

Nhận biết

Cho hình chóp tam giác đều \(S.ABC\) có độ dài cạnh đáy bằng \(a\), góc hợp bởi cạnh bên và mặt đáy bằng \({60^0}\). Thể tích khối chóp đã cho.

A. \(\dfrac{{\sqrt 3 {a^3}}}{4}.\) B. \(\dfrac{{\sqrt 3 {a^3}}}{{12}}.\) C. \(\dfrac{{\sqrt 3 {a^3}}}{3}.\) D. \(\dfrac{{\sqrt 3 {a^3}}}{6}.\)

Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Gọi \(O\) là trọng tâm tam giác đều \(ABC\) \( \Rightarrow SO \bot \left( {ABC} \right)\).

\( \Rightarrow OA\) là hình chiếu của \(SA\) trên \(\left( {ABC} \right)\) \( \Rightarrow \angle \left( {SA;\left( {ABC} \right)} \right) = \angle \left( {SA;OA} \right) = \angle SAO = {60^0}\).

Vì \(SO \bot \left( {ABC} \right) \Rightarrow SO \bot AO\) \( \Rightarrow \Delta SAO\) vuông tại \(A\).

Tam giác \(ABC\) đều cạnh \(a\) \( \Rightarrow AM = \dfrac{{a\sqrt 3 }}{2}\) \( \Rightarrow AO = \dfrac{2}{3}AM = \dfrac{{a\sqrt 3 }}{3}\) và \({S_{\Delta ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\).

Xét tam giác vuông \(SAO\) có:  \(SO = AO.\tan {60^0} = a.\)

Vậy \({V_{S.ABC}} = \dfrac{1}{3}.SO.{S_{ABC}}\)\( = \dfrac{1}{3}.a.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{{12}}.\)

Chọn B.

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Hình Chóp đáy Tam Giác đều