Cho Hình Chóp Tứ Giác đều S.ABCD Có Cạnh đáy Bằng A Góc Giữa ...

YOMEDIA NONE Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a góc giữa cạnh bên và mặt phẳng đáy bằng \(60{}^\circ \). Tính thể tích khối chóp S.ABCD. ADMICRO
  • Câu hỏi:

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a góc giữa cạnh bên và mặt phẳng đáy bằng \(60{}^\circ \). Tính thể tích khối chóp S.ABCD.

    • A. \(\frac{{{a^3}\sqrt 6 }}{2}\)
    • B. \(\frac{{{a^3}\sqrt 6 }}{6}\)
    • C. \(\frac{{{a^3}}}{6}\)
    • D. \(\frac{{{a^3}\sqrt 6 }}{3}\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có: \(\widehat{SBO}=60{}^\circ \).

    \(SO=OB.\tan 60{}^\circ =\frac{a\sqrt{2}}{2}.\tan 60{}^\circ =\frac{a\sqrt{6}}{2}\)

    \({{S}_{ABCD}}={{a}^{2}}\)

    Suy ra \({{V}_{SABCD}}=\frac{1}{3}SO.{{S}_{ABCD}} =\frac{1}{3}.\frac{a\sqrt{6}}{2}.{{a}^{2}} =\frac{{{a}^{3}}\sqrt{6}}{6}\).

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 270974

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Tô Hiệu lần 2

    50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Một đội văn nghệ có 10 người gồm 6 nam và 4 nữ. Cần chọn ra một bạn nam và một bạn nữ để hát song ca. Hỏi có bao nhiêu cách chọn?
  • Cho cấp số nhân \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=-2\) và công bội q=3. Số hạng \({{u}_{2}}\) là
  • Cho hàm số \(y=f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên Khẳng định nào sau đây là khẳng định đúng?
  • Cho hàm số \(f\left( x \right)\) có bảng biến thiên như hình vẽ. ​ Điểm cực tiểu của hàm số đã cho là
  • Cho hàm số \(y=f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên dưới đây ​ Hàm số \(y=f\left( x \right)\) có bao nhiêu điểm cực trị?
  • Các đường tiệm cận đứng và ngang của đồ thị hàm số \(y=\frac{2x+1}{x-1}\) là:
  • Đường cong ở hình bên là đồ thị của hs nào?
  • Số giao điểm của đồ thị hàm số \(y={{x}^{4}}-4{{x}^{2}}-5\) và trục hoành là
  • Với a là số thực dương tùy ý khác 1, ta có \({{\log }_{3}}\left( {{a}^{2}} \right)\) bằng:
  • Tính đạo hàm của hàm số \(y={{\log }_{5}}({{x}^{2}}+1).\)
  • Cho a là số dương tuỳ ý, \(\sqrt[4]{{{a}^{3}}}\) bằng
  • Tìm tập nghiệm S của phương trình \({{{5}^{2{{x}^{2}}-x}}=5}\)
  • Nghiệm nhỏ nhất của phươg trình \({{\log }_{5}}\left( {{x}^{2}}-3x+5 \right)=1\) là
  • Họ nguyên hàm của hàm số \(f\left( x \right)={{\text{e}}^{x}}+\cos x\) là
  • Tìm nguyên hàm của hàm số \(f\left( x \right)=\frac{2}{4x-3}\)
  • Nếu \(\int\limits_{2}^{5}{f\left( x \right)\text{d}x}=3\) và \(\int\limits_{5}^{7}{f\left( x \right)\text{d}x}=9\) thì \(\int\limits_{2}^{7}{f\left( x \right)\text{d}x}\) bằng bao nhiêu?
  • Giá trị của \(\int\limits_{0}^{3}{\text{d}x}\) bằng
  • Số phức liên hợp của số phức \(z=-2+3i\).
  • Cho hai số phức \({{z}_{1}}=3+2i\) và \({{z}_{2}}=1-i\). Phần ảo của số phức \({{z}_{1}}-{{z}_{2}}\) bằng
  • Cho hai số phức \({{z}_{1}}=2+2i\) và \({{z}_{2}}=2-i\). Điểm biểu diễn số phức \({{z}_{1}}+{{z}_{2}}\) trên mặt phẳng tọa độ là điểm nào dưới đây?
  • Thể tích của khối hộp chữ nhật có độ dài ba cạnh lần lượt là \(1;2;3\)
  • Khối chóp có diện tích đáy là \(B\), chiều cao bằng \(h\). Thể tích \(V\) của khối chóp là
  • Cho khối nón có bán kính đáy \(r=\sqrt{3}\) và chiều cao h=4. Tính thể tích V của khối nón đã cho.
  • Cho hình trụ có bán kính đáy \(r\) và độ dài đườg sinh là \(l\). Thể tích khối trụ là:
  • Trong kg với hệ trục tọa độ Oxyz, cho \(\overrightarrow{a}=-\overrightarrow{i}+2\overrightarrow{j}-3\overrightarrow{k}\).
  • Trong không gian Oxyz, cho mặt cầu \(\left( S \right): {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4x+2y-6z+5=0\). Tọa độ tâm I và bán kính của mặt cầu \(\left( S \right)\) bằng:
  • Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( -2;0;0 \right)\) và vectơ \(\overrightarrow{n}\left( 0;1;1 \right)\). Phương trình mặt phẳng \(\left( \alpha \right)\) có vectơ pháp tuyến \(\overrightarrow{n}\) và đi qua điểm A là
  • Trong kg với hệ tọa độ Oxyz, cho hai điểm \(A\left( 1;2;2 \right), B\left( 3;-2;0 \right)\).
  • Từ một hộp chứa ba quả cầu trắng và hai quả cầu đen lấy ngẫu nhiên hai quả. Xác suất để lấy được cả hai quả trắng là:
  • Hàm số \(y={{x}^{3}}-3{{x}^{2}}+10\) nghịch biến trên khoảng nào sau đây?
  • Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn \(\left[ -2;1 \right]\). Tổng M+m bằng:
  • Tập nghiệm của bất phương trình \({{\log }_{3-\sqrt{5}}}\left( 2x-3 \right)\ge 0\) là
  • Cho \(\int\limits_{0}^{2}{f\left( x \right)\text{d}x}=3,\int\limits_{0}^{2}{g\left( x \right)\text{d}x}=-1\) thì \(\int\limits_{0}^{2}{\left[ f\left( x \right)-5g\left( x \right)+x \right]\text{d}x}\) bằng:
  • Cho số phức z thỏa mãn: \(z\left( 2-i \right)+13i=1\). Tính mô đun của số phức z.
  • Cho hình chóp \(S.ABC\text{D}\) có đáy là hình vuông, \(AC=a\sqrt{2}\) . SA vuông góc với mặt phẳng \(\left( ABCD \right), SA=a\sqrt{3}\) (minh họa như hình bên). Góc giữa đường thẳng SB và mặt phẳng \(\left( ABCD \right)\) bằng
  • Cho hình chóp tứ giác đều S.ABCD có các cạnh đáy đều bằng a và các cạnh bên đều bằng 2a. Tính khoảng cách từ S đến mặt phẳng (ABCD).
  • Trong không gian Oxyz, cho hai điểm \(A\left( -2;1;0 \right), B\left( 2;-1;2 \right)\). Phương trình của mặt cầu có đường kính AB là
  • Phương trình tham số của đường thẳng \(\left( d \right)\) đi qua hai điểm \(A\left( 1;2;-3 \right)\) và \(B\left( 3;-1;1 \right)\) là
  • Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau: Đặt \(g\left( x \right)=f\left( x+2 \right)+\frac{1}{3}{{x}^{3}}-2{{x}^{2}}+3x+2019\). Khẳng định nào sau đây đúng?
  • Tìm tất cả giá trị của tham số m để bất phương trình \(\log \left( 2{{x}^{2}}+3 \right)>\log \left( {{x}^{2}}+mx+1 \right)\) có tập nghiệm là \(\mathbb{R}\).
  • Cho hàm số . Tính \(I = 2\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin x} \right)\cos xdx + 3\int\limits_0^1 {f\left( {3 - 2x} \right)} } dx\)
  • Tìm phần ảo của số phức z thỏa mãn \(z+2\overline{z}={{\left( 2-i \right)}^{3}}\left( 1-i \right)\).
  • Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a góc giữa cạnh bên và mặt phẳng đáy bằng \(60{}^\circ \). Tính thể tích khối chóp S.ABCD.
  • Ông An có một mảnh vườn hình elip có độ dài trục lớn bằng 16m và độ dài trục bé bằng 10m. Ông muốn trồng hoa trên một dải đất rộng 8m và nhận trục bé của elip làm trục đối xứng (như hình vẽ). Biết kinh phí để trồng hoa là 100.000$ đồng/\(1\,{{m}^{2}}\). Hỏi ông An cần bao nhiêu tiền để trồng hoa trên dải đất đó? (Số tiền được làm tròn đến hàng nghìn).
  • Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-2}{3}\) và mặt phẳng \(\left( P \right):x-y-z-1=0\). Phương trình đường thẳng \(\Delta \) đi qua \(A\left( 1;\,1;\,-2 \right)\), song song với mặt phẳng \(\left( P \right)\) và vuông góc với đường thẳng d là
  • Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình bên. ​ Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để hàm số \(y=\left| f\left( x-2018 \right)+m \right|\) có 5 điểm cực trị. Tổng tất cả các giá trị của tập S bằng
  • Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn \(\log _{3}^{{}}\left( x+y \right)=\log _{4}^{{}}\left( {{x}^{2}}+{{y}^{2}} \right)\)?
  • Cho hàm số \(y=f\left( x \right)\). Hàm số \(y={f}'\left( x \right)\) có đồ thị như hình vẽ dưới đây Biết rằng diện tích hình phẳng giới hạn bởi trục Ox và đồ thị hàm số \(y={f}'\left( x \right)\) trên đoạn \(\left[ -2;\,1 \right]\) và \(\left[ 1;\,4 \right]\) lần lượt bằng 9 và 12. Cho \(f\left( 1 \right)=3\). Giá trị biểu thức \(f\left( -2 \right)+f\left( 4 \right)\) bằng
  • Cho số phức z thỏa mãn điều kiện \(\left| \frac{z+2-i}{\overline{z}+1-i} \right|=\sqrt{2}\). Tìm giá trị lớn nhất của \(\left| z \right|\).
  • Trong không gian Oxyz, cho hai điểm \(A\left( 3\,;1\,;-3 \right), B\left( 0\,;-2\,;3 \right)\) và mặt cầu \(\left( S \right):{{\left( x+1 \right)}^{2}}+{{y}^{2}}+{{\left( z-3 \right)}^{2}}=1\). Xét điểm M thay đổi thuộc mặt cầu \(\left( S \right)\), giá trị lớn nhất của \(M{{A}^{2}}+2M{{B}^{2}}\) bằng
ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Giải tích 12 Chương 3

Đề thi giữa HK1 môn Toán 12

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn bài Người lái đò sông Đà

Đề thi giữa HK1 môn Ngữ Văn 12

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 7 Lớp 12 Economic Reforms

Tiếng Anh 12 mới Review 1

Đề thi giữa HK1 môn Tiếng Anh 12

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Vật lý 12 Chương 3

Đề thi giữa HK1 môn Vật Lý 12

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Hoá Học 12 Chương 4

Đề thi giữa HK1 môn Hóa 12

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Sinh Học 12 Chương 5

Đề thi giữa HK1 môn Sinh 12

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 2 Lịch Sử VN

Đề thi giữa HK1 môn Lịch Sử 12

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

Đề thi giữa HK1 môn Địa lý 12

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Đề thi giữa HK1 môn GDCD 12

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Đề thi giữa HK1 môn Công nghệ 12

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Đề thi giữa HK1 môn Tin học 12

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Video ôn thi THPT QG môn Hóa

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG Tiếng Anh

Video ôn thi THPT QG môn Vật lý

Đàn ghi ta của Lor-ca

Tây Tiến

Ai đã đặt tên cho dòng sông

Sóng- Xuân Quỳnh

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Người lái đò sông Đà

Quá trình văn học và phong cách văn học

Đất Nước- Nguyễn Khoa Điềm

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Hình Chóp Tứ Giác đều Cạnh đáy Bằng A Góc Giữa Mặt Bên Và đáy Bằng 60 đó