Cho Hình Lập Phương ABCD.EFGH - Hoc247
Có thể bạn quan tâm
- Câu hỏi:
Cho hình lập phương ABCD.EFGH . Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {EG} \)?
- A. 90o
- B. 60o
- C. 45o
- D. 120o
Lời giải tham khảo:
Đáp án đúng: C
Ta có: EG // AC (do ACGE là hình chữ nhật)
\( \Rightarrow \left( {\overrightarrow {AB} ,\overrightarrow {EG} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC} = 45^\circ \)
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 221620
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi giữa HK2 môn Toán 11 năm 2021 - Trường THPT Thủ Khoa Huân
40 câu hỏi | 60 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho hàm số \( f(x) = \frac{{{x^2} + 1}}{{{x^2} + 5x + 6}}\). Hàm số f( x) liên tục trên khoảng nào sau đây?
- Cho hàm số y = f( x) có đồ thị như hình vẽ, chọn kết luận đúng:
- Hàm số y = f( x ) có đồ thị dưới đây gián đoạn tại điểm có hoành độ bằng bao nhiêu
- Tìm m để các hàm số \(f(x) = \left\{ \begin{array}{l} \frac{{\sqrt {x + 1} - 1}}{x}{\rm{ \ khi \ }}x > 0\\ 2{x^2} + 3m + 1{\rm{ \ khi \ }}x \le 0 \end{array} \right.\) liên tục trên R.
- Tìm giới hạn \(B=\lim\limits _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-3 x+4}-2 x}{\sqrt{x^{2}+x+1}-x}\)
- Tìm giới hạn \(A=\lim\limits _{x \rightarrow+\infty} \frac{(2 x+1)^{3}(x+2)^{4}}{(3-2 x)^{7}}\)
- Tìm giới hạn \(B=\lim \limits_{x \rightarrow+\infty} \frac{x \sqrt{x^{2}+1}-2 x+1}{\sqrt[3]{2 x^{3}-2}+1}\)
- Tìm giới hạn \(A=\lim \limits_{x \rightarrow-\infty} \frac{\sqrt[3]{3 x^{3}+1}-\sqrt{2 x^{2}+x+1}}{\sqrt[4]{4 x^{4}+2}}\)
- \(\text { Tính giới hạn } L=\lim \frac{n^{2}-3 n^{3}}{2 n^{3}+5 n-2}\)
- Cho dãy số \(\left(u_{n}\right) \text { vói } u_{n}=\frac{4 n^{2}+n+2}{a n^{2}+5}\). Để dãy số đã cho có giới hạn bằng 2 , giá trị của a là:
- \(\text { Tính giới hạn } L=\lim \frac{n^{2}+n+5}{2 n^{2}+1} \text { . }\)
- Cho dãy số \(\left(u_{n}\right) \text { với } u_{n}=\frac{2 n+b}{5 n+3}\)trong đó b là tham số thực. Để dãy số \((u_n)\) có giới hạn hữu hạn, giá trị của b là:
- Cho hình vuông \({A_1}{B_1}{C_1}{D_1}\) có cạnh bằng 1. Gọi Ak+1, Bk+1, Ck+1, Dk+1 thứ tự là trung điểm các cạnh AkBk, BkCk, CkDk, DkAk (với k = 1, 2, ... ). Chu vi của hình vuông \({A_{2018}}{B_{2018}}{C_{2018}}{D_{2018}}\) bằng
- Cho hình vuông ABCD có cạnh bằng a và có diện tích \({S_1}\). Nối 4 trung điểm A1, B1, C1, D1 theo thứ tự của cạnh AB, BC, CD, DA ta được hình vuông thứ hai có diện tích S2.
- Giá trị của tổng \(4 + 44 + 444 + ... + 44...4\) (tổng đó có 2018 số hạng)
- Cho dãy số (un) xác định bởi: \({u_1} = \frac{1}{3}\) và \({u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n}\). Tổng \(S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}}\) bằng
- Giải pt 1 + 8 + 15 + 22 + ... + x = 7944
- Người ta viết thêm 999 số thực vào giữa số 1 và số 2018 để được csc có 1001 số hạng.
- Một công ti trách nhiệm hữu hạn thực hiện trả lương cho các kĩ sư theo phương thức sau: Mức lương của quý làm
- Cho 4 số thực a, b, c, d là số hạng liên tiếp của một csc.
- Cho (un) là cấp số cộng biết \({u_3} + {u_{13}} = 80\). Tổng 15 số hạng đầu của csc đó bằng
- Cho (un) xác định bởi u1 = 1 và \({u_{n + 1}} = \sqrt {u_n^2 + 2} ,\forall n \in {N^*}\).
- Tam giác ABC có ba cạnh a, b, c thỏa mãn a2, b2, c2 theo thứ tự đó lập thành một csc.
- Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một csc.
- Cho tứ diện ABCD . Gọi M, N lần lượt là trung điểm của AB, CD và G là trung điểm của MN
- Cho hình hộp \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\) . Trong các khẳng định sau, khẳng định nào sai?
- Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành ABEF và K là tâm hình bình hành BCGF . Trong các khẳng định sau, khẳng định nào đúng?
- Cho hình lăng trụ tam giác \(A B C \cdot A_{1} B_{1} C\). Đặt \(\overrightarrow{A A_{1}}=\vec{a}, \overrightarrow{A B}=\vec{b}, \overrightarrow{A C}=\vec{c}, \overrightarrow{B C}=\vec{d}\). Trong các đẳng thức sau, đẳng thức nào đúng?
- Trong không gian cho hai tam giác đều ABC và ABC' có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC' và C'A. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CC'} \)?
- Cho tứ diện ABCD đều cạnh bằng a. Gọi M là trung điểm CD, \(\alpha\) là góc giữa AC và BM. Chọn khẳng định đúng?
- Cho hình lập phương ABCD.EFGH
- Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau, mệnh đề nào có thể sai?
- Trong không gian cho đường thẳng \(\Delta\) và điểm O . Qua O có mấy đường thẳng vuông góc với \(\Delta\) cho trước?
- Cho hai đường thẳng phân biệt a,b và mặt phẳng (P), trong đó \(a \perp(P)\). Mệnh đề nào sau đây là sai?
- Các đường thẳng cùng vuông góc với một đt thì:
- Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc. Đường thẳng AB vuông góc với
- Cho hình hộp chữ nhật ABCD.ABCD. Khẳng định nào sau đây không đ?
- Cho hình lăng trụ đứng ABC.ABC có đáy ABC là tg vuông cân ở A. H là trung điểm BC.
- Cho hình chóp S.ABC có hai mặt bên (SAB) và (SAC) vuông góc với đáy (ABC), tam giác ABC vuông cân ở A và có đường cao \(AH,{\rm{ }}(H \in BC)\). Gọi O là hình chiếu vuông góc của A lên (SBC). Khẳng định nào sau đây đúng?
- Cho hình chóp S.ABC có hai mặt bên (SBC) và (SAC) vuông góc với đáy (ABC). Khẳng định nào sau đây s?
XEM NHANH CHƯƠNG TRÌNH LỚP 11
Toán 11
Toán 11 Kết Nối Tri Thức
Toán 11 Chân Trời Sáng Tạo
Toán 11 Cánh Diều
Giải bài tập Toán 11 KNTT
Giải bài tập Toán 11 CTST
Trắc nghiệm Toán 11
Ngữ văn 11
Ngữ Văn 11 Kết Nối Tri Thức
Ngữ Văn 11 Chân Trời Sáng Tạo
Ngữ Văn 11 Cánh Diều
Soạn Văn 11 Kết Nối Tri Thức
Soạn Văn 11 Chân Trời Sáng Tạo
Văn mẫu 11
Tiếng Anh 11
Tiếng Anh 11 Kết Nối Tri Thức
Tiếng Anh 11 Chân Trời Sáng Tạo
Tiếng Anh 11 Cánh Diều
Trắc nghiệm Tiếng Anh 11 KNTT
Trắc nghiệm Tiếng Anh 11 CTST
Tài liệu Tiếng Anh 11
Vật lý 11
Vật lý 11 Kết Nối Tri Thức
Vật Lý 11 Chân Trời Sáng Tạo
Vật lý 11 Cánh Diều
Giải bài tập Vật Lý 11 KNTT
Giải bài tập Vật Lý 11 CTST
Trắc nghiệm Vật Lý 11
Hoá học 11
Hoá học 11 Kết Nối Tri Thức
Hoá học 11 Chân Trời Sáng Tạo
Hoá Học 11 Cánh Diều
Giải bài tập Hoá 11 KNTT
Giải bài tập Hoá 11 CTST
Trắc nghiệm Hoá học 11
Sinh học 11
Sinh học 11 Kết Nối Tri Thức
Sinh Học 11 Chân Trời Sáng Tạo
Sinh Học 11 Cánh Diều
Giải bài tập Sinh học 11 KNTT
Giải bài tập Sinh học 11 CTST
Trắc nghiệm Sinh học 11
Lịch sử 11
Lịch Sử 11 Kết Nối Tri Thức
Lịch Sử 11 Chân Trời Sáng Tạo
Giải bài tập Sử 11 KNTT
Giải bài tập Sử 11 CTST
Trắc nghiệm Lịch Sử 11
Địa lý 11
Địa Lý 11 Kết Nối Tri Thức
Địa Lý 11 Chân Trời Sáng Tạo
Giải bài tập Địa 11 KNTT
Giải bài tập Địa 11 CTST
Trắc nghiệm Địa lý 11
GDKT & PL 11
GDKT & PL 11 Kết Nối Tri Thức
GDKT & PL 11 Chân Trời Sáng Tạo
Giải bài tập KTPL 11 KNTT
Giải bài tập KTPL 11 CTST
Trắc nghiệm GDKT & PL 11
Công nghệ 11
Công nghệ 11 Kết Nối Tri Thức
Công nghệ 11 Cánh Diều
Giải bài tập Công nghệ 11 KNTT
Giải bài tập Công nghệ 11 Cánh Diều
Trắc nghiệm Công nghệ 11
Tin học 11
Tin học 11 Kết Nối Tri Thức
Tin học 11 Cánh Diều
Giải bài tập Tin học 11 KNTT
Giải bài tập Tin học 11 Cánh Diều
Trắc nghiệm Tin học 11
Cộng đồng
Hỏi đáp lớp 11
Tư liệu lớp 11
Xem nhiều nhất tuần
Đề thi HK1 lớp 11
Đề thi giữa HK1 lớp 11
Đề thi HK2 lớp 12
Đề thi giữa HK2 lớp 11
Tôi yêu em - Pu-Skin
Đề cương HK1 lớp 11
Video bồi dưỡng HSG môn Toán
Công nghệ 11 Bài 16: Công nghệ chế tạo phôi
Chí Phèo
Hạnh phúc một tang gia
Chữ người tử tù
Cấp số cộng
Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ
Cấp số nhân
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Hình Lập Phương Abcd.efgh
-
Cho Hình Lập Phương ABCD.EFGH. Hãy Xác định Góc Giữa Cặp Vectơ
-
Cho Hình Lập Phương ABCD.EFGH. Hãy Xác định Góc Giữa Cặp Vectơ (
-
Cho Hình Lập Phương ABCD.EFGH. Góc Giữa AF Và EG Bằng
-
Cho Hình Lập Phương ABCD.EFGH. Hãy Xác định Góc Giữa Cặp Vectơ
-
Cho Hình Lập Phương ABCD.EFGH (tham Khảo Hình Vẽ Bên) Có Cạnh ...
-
Cho Hình Lập Phương ABCD.EFGH. Hãy Xác định ... - Vietjack.online
-
Cho Hình Lập Phương ABCD.EFGH. Hãy Xác định ...
-
Cho Hình Lập Phương Abcd.efgh, Góc Giữa Hai Vecto Ac,fg Là? Câu Hỏi ...
-
Cho Hình Lập Phương ABCD.EFGH. Hãy Xác định ...
-
Cho Hình Lập Phương $ABCD.EFGH$. Hãy Xác định Góc Giữa Cặp ...
-
Cho Hình Lập Phương ABCD.EFGH. Hãy Xác định Góc Giữa Các Cặp ...
-
Cho Hình Lập Phương ABCD.A'B'C'D'. Chọn Khẳng định Sai?
-
Cho Hình Lập Phương (ABCD.EFGH), Góc Giữa Hai ...