Cho Hình Trụ Có Chiều Cao Bằng 5, Chu Vi đáy Bằng \(8\pi \). Tính Thể ...
Có thể bạn quan tâm
- Câu hỏi:
Cho hình trụ có chiều cao bằng 5, chu vi đáy bằng \(8\pi \). Tính thể tích của khối trụ.
- A. \(80\pi \)
- B. \(20\pi \)
- C. \(60\pi \)
- D. \(68\pi \)
Lời giải tham khảo:
Đáp án đúng: A
Theo bài ra ta có: \(2\pi R = 8\pi \Leftrightarrow R = 4\).
Thể tích khối trụ là: \(V = \pi {R^2}h = \pi {.4^2}.5 = 80\pi \).
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 256706
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Sơn Mỹ
50 câu hỏi | 90 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Từ các chữ số 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?
- Cho cấp số nhân (un) với u1 = 3, công bội \(q = - \frac{1}{2}\). Số hạng u3 bằng
- Nghiệm của phương trình \({2^{3x}} = {2^{x + 2020}}\) là
- Thể tích của khối lập phương có cạnh bằng b là
- Đạo hàm của hàm số \(y = {\log _3}\left( {4x + 1} \right)\) là:
- Cho các hàm số \(f\left( x \right)\) và \(g\left( x \right)\) liên tục trên tập xác định. Mệnh đề nào sau đây sai?
- Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, có cạnh \(SA=\sqrt{2}a\) và SA vuông góc với mặt phẳng \(\left( ABCD \right)\). Thể tích của khối chóp S.ABCD bằng
- Thể tích của khối lăng trụ đứng có đáy là tam giác đều cạnh a và có chiều cao h = a là:
- Cho khối cầu có thể tích \(V = 288\pi \). Bán kính của khối cầu bằg
- Cho hàm số y = f(x) có bảng biến thiên như sau:Hàm số đã cho đồng biến trên khoảg nào dưới đây ?
- Với a là số thực dương tùy ý, \({\log _8}\left( {{a^6}} \right)\) bằng
- Cho hình trụ có chiều cao bằng 5, chu vi đáy bằng \(8\pi \). Tính thể tích của khối trụ.
- Cho hàm số y = f(x) có bảg biến thiên như sau:Hàm số đã cho đạt cực tiểu tại
- Cho hàm số \(y = a{x^3} + b{x^2} + cx + d{\rm{ }}\left( {a \ne 0} \right)\) có đồ thị như hình bên. Mệnh đề nào sau đây là đúng?
- Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 2x - 3} }}{{2x + 1}}\) là
- Tập nghiệm của bất phương trình \({\left( {\frac{1}{5}} \right)^{3x - 1}} \ge \frac{1}{{25}}\) là
- Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị trong hình dưới. Số nghiệm của phương trình \(f\left( x \right)+2=0\) là
- Nếu \(\int\limits_{2}^{3}{f\left( x \right)dx}=5\) và \(\int\limits_{2}^{3}{g\left( x \right)dx}=-1\) thì \(\int\limits_{2}^{3}{\left[ f\left( x \right)-g\left( x \right)+2x \right]dx}\) bằng
- Số phức liên hợp của số phức \(z = \frac{{ - 3 - i}}{{2 + i}}\) là
- Cho hai số phức \({z_1} = 2 - i\) và \({z_2} = - 3 - 3i\). Phần ảo của số phức \({z_1} - {z_2}\) bằng
- Mô-đun của số phức z = 5 - 4i bằng
- Trong không gian Oxyz, hình chiếu vuông góc của điểm M(1;2;-5) trên trục Oz có toạ độ là
- Trong không gian Oxyz, cho hai điểm \(A\left( -3;2;2 \right)\) và \(B\left( 1;0;-2 \right)\). Phương trình mặt cầu đường kính AB là
- Trong không gian Oxyz, cho mặt phẳng \(\left( Q \right):3\,x-2y+z-3=0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( Q \right)\)
- Trong không gian Oxyz, cho đườg thẳng \(d:\,\,\left\{ \begin{array}{l}x = 2 + 3t\\y = \,\,4t\\z = - 1 - t\end{array} \right.\).
- Cho hình chóp S.ABCD có đáy là hình chữ nhật, cạnh BC bằng a. Mặt bên tam giác SAB đều có cạnh bằng \(\frac{a}{\sqrt{2}}\) và nằm trong mặt phẳng vuông góc với đáy. Tính góc giữa đường thẳng SC và mặt phẳng \(\left( ABCD \right)\).
- Cho hàm số f(x) có bảg xét dấu của f(x) như sau:Số điểm cực trị của hàm số đã cho là
- Cho hàm số \(f\left( x \right) = - {x^3} + 4{x^2} - 5x + 1\). Tổng giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn [1;3] là
- Cho \(a={{\log }_{2}}m\) và \(A={{\log }_{m}}\left( 8m \right)\) với \(0
- Số giao điểm của đồ thị hàm số \(y = \frac{1}{3}{x^3} + {x^2} + 2x + 2020\) với trục hoành là
- Tập nghiệm của bất phương trình \({4^x} - {2^{x + 1}} - 8 > 0\) là
- Trong không gian, cho tam giác ABC vuông tại A. Khi quay tam giác ABC xung quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón có diện tích xung quanh của hình nón \(8\sqrt{3}\pi {{a}^{2}}\). Góc giữu đường sinh hình nón và mặt đáy là \({{30}^{0}}\). Tính thể tích khối nón tạo thành
- Xét \(\int\limits_{0}^{1}{x\sqrt{{{x}^{2}}+1}\text{d}x}\), nếu đặt \(u=\sqrt{{{x}^{2}}+1}\) thì \(\int\limits_{0}^{1}{x\sqrt{{{x}^{2}}+1}\text{d}x}\) bằng
- Diện tích S của hình phẳng giới hạn bởi các đường \(y={{x}^{3}}-6{{x}^{2}}\) và y=6-11x được tính bởi công thức nào dưới đây?
- Tìm hai số thực x và y thỏa mãn \(\left( x+2yi \right)+\left( 2-i \right)-1-3i=0\) với i là đơn vị ảo
- Gọi \({{z}_{0}}\) là nghiệm phức có phần ảo dương của phương trình \({{z}^{2}}-4z+5=0\). Môđun của số phức \(\text{w}=i\left( {{z}_{0}}+2i \right)\) bằng
- Trong không gian Oxyz, cho điểm \(M\left( 1;-2;3 \right)\) và đường thẳng \(\Delta :\frac{x-2}{3}=\frac{3-y}{4}=\frac{z}{2}\). Mặt phẳng đi qua M và vuông góc với \(\Delta \) có phương trình là
- Trong không gian Oxyz, cho điểm \(M\left( 3\,;\,1\,;\,0 \right)\) và mặt phẳng \((\alpha ):3x-2x+z-3=0\). Đường thẳng \(\Delta \) đi qua M và vuông góc với mặt phẳng \((\alpha )\) có phương trình là
- Cần xếp 4 quyển sách Toán, 2 quyển sách Anh, 2 quyển sách Lý vào một kệ sách, các quyển sách đôi một khác nhau. Xác suất để sách Lý xếp liền nhau và chỉ xếp cạnh sách Toán là
- Cho hình chóp S.ABCD có đáy ABCD là hình thoi. Biết rằng tứ diện SABD là tứ diện đều cạnh a. Khoảng cách giữa hai đường thẳng BD và SC bằng
- Có bao nhiêu giá trị nguyên của tham số thực m sao cho hàm số \(y = \frac{1}{3}{x^3} - {x^2} - \left( {3m + 2} \right)x + 2\) nghịch biến trên đoạn có độ dài bằng 4 là
- Công ty A đang tiến hành thử nghiệm độ chính xác của bộ xét nghiệm COVID-19. Biết rằng: cứ sau n lần thử nghiệm thì tỷ lệ chính xác tuân theo công thức \(S(n) = \frac{1}{{1 + {{2020.10}^{ - 0,01n}}}}\). Hỏi phải tiến hành ít nhất bao nhiêu lần thử nghiệm để đảm bảo tỉ lệ chính xác đạt trên 80%?
- Cho hàm số f(x) có bảng biến thiên của hàm số f'(x) như sau: Số điểm cực trị của hàm số \(y = f\left( {1 - {x^2}} \right)\) là:
- Cho khối trụ có thể tích \(200\pi {{a}^{3}}\). Biết rằng khi cắt khối trụ đó bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3a thì thiết diện thu được là một hình vuông. Diện tích xung quanh của hình trụ đã cho bằng
- Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}}{\cot x.f\left( {{\sin }^{2}}x \right)\text{d}x}=\int\limits_{1}^{16}{\frac{f\left( \sqrt{x} \right)}{x}\text{d}x}=1\). Tính tích phân \(\int\limits_{\frac{1}{8}}^{1}{\frac{f\left( 4x \right)}{x}\text{d}x}\).
- Cho hàm số f(x) có đồ thị như hình vẽ Số nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\) của phương trình \(f\left( {4\left| {\sin x} \right|} \right) = 3\) là
- Cho x,y,z>0; a,b,c>1 và \({{a}^{x}}={{b}^{y}}={{c}^{z}}=\sqrt{abc}\). Giá trị lớn nhất của biểu thức \(P=\frac{16}{x}+\frac{16}{y}-{{z}^{2}}\) thuộc khoảng nào dưới đây?
- Cho hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+9x+m\) (m là tham số thực). Gọi là tập hợp tất cả các giá trị của sao cho \(\underset{\left[ 0;2 \right]}{\mathop{\text{max}}}\,{{\left[ f\left( x \right) \right]}^{2}}+\underset{\left[ 0;2 \right]}{\mathop{\text{min}}}\,{{\left[ f\left( x \right) \right]}^{2}}=2020\). Số tập con của S là:
- Cho hình hộp chữ nhật \(ABCD.{A}'{B}'{C}'{D}'\) có \(A{A}'=9\), AB=3 và AD=4. Điểm M nằm trên cạnh \({A}'{B}'\) sao cho \({A}'{B}'=3.{A}'M\). Mặt phẳng \(\left( ACM \right)\) cắt \({B}'{C}'\) tại điểm N. Thể tích của khối đa diện lồi có các đỉnh là các điểm \(A,\,C,\,D,\,{A}',\,M,\,N,\,{C}'\) và \({D}'\) bằng
- Cho phương trình \(m{{\ln }^{2}}(x+1)-(x+2-m)\ln (x+1)-x-2=0\) \(\left( 1 \right)\). Tập hợp tất cả giá trị của tham số m để phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt thỏa mãn \(0
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Ôn tập Toán 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn bài Vợ chồng A Phủ
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 10 Lớp 12 Endangered Species
Tiếng Anh 12 mới Review 2
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Vật lý 12 Chương 4
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Ôn tập Hóa học 12 Chương 5
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 2 - Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 4 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 Địa lý dân cư
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 2
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 4
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 3
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Sinh
Tuyên Ngôn Độc Lập
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Vợ Nhặt
Đất Nước- Nguyễn Khoa Điềm
Chiếc thuyền ngoài xa
Vợ chồng A Phủ
Việt Bắc
Những đứa con trong gia đình
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Chu Vi đáy Hình Trụ Bằng
-
Cho Hình Trụ Có Chu Vi đáy Là (10pi ) Và Chiều Cao (h = 11 ) .
-
Cách Tính Thể Tích Hình Trụ - Từ Điển Toán Học
-
Công Thức Tính Chu Vi Diện Tích Và Thể Tích Của Hình Trụ Rõ Ràng Nhất
-
Một Hình Trụ Có Chiều Cao Bằng 3, Chu Vi đáy Bằng 4 . Tính Thể Tích ...
-
Hướng Dẫn Cách Tính Diện Tích Xung Quanh Hình Trụ Chuẩn Xác 100%
-
Tính Thể Tích Của Khối Trụ Biết Chu Vi đáy Của Hình Trụ đó Bằng 6pi ...
-
Công Thức Tính Chu Vi đáy Hình Trụ - Blog Của Thư
-
Tính Thể Tích Của Khối Trụ Biết Chu Vi đáy Của Hình Trụ đó Bằng 6π (cm ...
-
Một Hình Trụ Có Chiều Cao Bằng 3, Chu Vi đáy Bằng 4 Pi. Thể Tích...
-
Diện Tích Xung Quanh Hình Trụ, Diện Tích Toàn Phần Hình Trụ
-
Thể Tích Của Khối Trụ Có Chu Vi đáy Bằng 4.pi.a...
-
Công Thức Tính Chu Vi Diện Tích Hình Trụ, Diện Tích Xung Quanh ...
-
Cách Tính Diện Tích Hình Tròn Và Chu Vi Hình Tròn
-
Cho Hình Trụ Có Chu Vi đáy Là 8pi Và Chiều Cao H = 10. Tính Thể Tích ...