Cho Hình Trụ Có Chiều Cao Bằng 5, Chu Vi đáy Bằng \(8\pi \). Tính Thể ...

YOMEDIA NONE Cho hình trụ có chiều cao bằng 5, chu vi đáy bằng \(8\pi \). Tính thể tích của khối trụ. ADMICRO
  • Câu hỏi:

    Cho hình trụ có chiều cao bằng 5, chu vi đáy bằng \(8\pi \). Tính thể tích của khối trụ.

    • A. \(80\pi \)
    • B. \(20\pi \)
    • C. \(60\pi \)
    • D. \(68\pi \)

    Lời giải tham khảo:

    Đáp án đúng: A

    Theo bài ra ta có: \(2\pi R = 8\pi \Leftrightarrow R = 4\).

    Thể tích khối trụ là: \(V = \pi {R^2}h = \pi {.4^2}.5 = 80\pi \).

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 256706

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Sơn Mỹ

    50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Từ các chữ số 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?
  • Cho cấp số nhân (un) với u1 = 3, công bội \(q = - \frac{1}{2}\). Số hạng u3 bằng
  • Nghiệm của phương trình \({2^{3x}} = {2^{x + 2020}}\) là
  • Thể tích của khối lập phương có cạnh bằng b là
  • Đạo hàm của hàm số \(y = {\log _3}\left( {4x + 1} \right)\) là:
  • Cho các hàm số \(f\left( x \right)\) và \(g\left( x \right)\) liên tục trên tập xác định. Mệnh đề nào sau đây sai?
  • Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, có cạnh \(SA=\sqrt{2}a\) và SA vuông góc với mặt phẳng \(\left( ABCD \right)\). Thể tích của khối chóp S.ABCD bằng
  • Thể tích của khối lăng trụ đứng có đáy là tam giác đều cạnh a và có chiều cao h = a là:
  • Cho khối cầu có thể tích \(V = 288\pi \). Bán kính của khối cầu bằg
  • Cho hàm số y = f(x) có bảng biến thiên như sau:​Hàm số đã cho đồng biến trên khoảg nào dưới đây ?
  • Với a là số thực dương tùy ý, \({\log _8}\left( {{a^6}} \right)\) bằng
  • Cho hình trụ có chiều cao bằng 5, chu vi đáy bằng \(8\pi \). Tính thể tích của khối trụ.
  • Cho hàm số y = f(x) có bảg biến thiên như sau:Hàm số đã cho đạt cực tiểu tại
  • Cho hàm số \(y = a{x^3} + b{x^2} + cx + d{\rm{ }}\left( {a \ne 0} \right)\) có đồ thị như hình bên. Mệnh đề nào sau đây là đúng?
  • Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 2x - 3} }}{{2x + 1}}\) là
  • Tập nghiệm của bất phương trình \({\left( {\frac{1}{5}} \right)^{3x - 1}} \ge \frac{1}{{25}}\) là
  • Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị trong hình dưới. Số nghiệm của phương trình \(f\left( x \right)+2=0\) là
  • Nếu \(\int\limits_{2}^{3}{f\left( x \right)dx}=5\) và \(\int\limits_{2}^{3}{g\left( x \right)dx}=-1\) thì \(\int\limits_{2}^{3}{\left[ f\left( x \right)-g\left( x \right)+2x \right]dx}\) bằng
  • Số phức liên hợp của số phức \(z = \frac{{ - 3 - i}}{{2 + i}}\) là
  • Cho hai số phức \({z_1} = 2 - i\) và \({z_2} = - 3 - 3i\). Phần ảo của số phức \({z_1} - {z_2}\) bằng
  • Mô-đun của số phức z = 5 - 4i bằng
  • Trong không gian Oxyz, hình chiếu vuông góc của điểm M(1;2;-5) trên trục Oz có toạ độ là
  • Trong không gian Oxyz, cho hai điểm \(A\left( -3;2;2 \right)\) và \(B\left( 1;0;-2 \right)\). Phương trình mặt cầu đường kính AB là
  • Trong không gian Oxyz, cho mặt phẳng \(\left( Q \right):3\,x-2y+z-3=0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( Q \right)\)
  • Trong không gian Oxyz, cho đườg thẳng \(d:\,\,\left\{ \begin{array}{l}x = 2 + 3t\\y = \,\,4t\\z = - 1 - t\end{array} \right.\).
  • Cho hình chóp S.ABCD có đáy là hình chữ nhật, cạnh BC bằng a. Mặt bên tam giác SAB đều có cạnh bằng \(\frac{a}{\sqrt{2}}\) và nằm trong mặt phẳng vuông góc với đáy. Tính góc giữa đường thẳng SC và mặt phẳng \(\left( ABCD \right)\).
  • Cho hàm số f(x) có bảg xét dấu của f(x) như sau:Số điểm cực trị của hàm số đã cho là
  • Cho hàm số \(f\left( x \right) = - {x^3} + 4{x^2} - 5x + 1\). Tổng giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn [1;3] là
  • Cho \(a={{\log }_{2}}m\) và \(A={{\log }_{m}}\left( 8m \right)\) với \(0
  • Số giao điểm của đồ thị hàm số \(y = \frac{1}{3}{x^3} + {x^2} + 2x + 2020\) với trục hoành là
  • Tập nghiệm của bất phương trình \({4^x} - {2^{x + 1}} - 8 > 0\) là
  • Trong không gian, cho tam giác ABC vuông tại A. Khi quay tam giác ABC xung quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón có diện tích xung quanh của hình nón \(8\sqrt{3}\pi {{a}^{2}}\). Góc giữu đường sinh hình nón và mặt đáy là \({{30}^{0}}\). Tính thể tích khối nón tạo thành
  • Xét \(\int\limits_{0}^{1}{x\sqrt{{{x}^{2}}+1}\text{d}x}\), nếu đặt \(u=\sqrt{{{x}^{2}}+1}\) thì \(\int\limits_{0}^{1}{x\sqrt{{{x}^{2}}+1}\text{d}x}\) bằng
  • Diện tích S của hình phẳng giới hạn bởi các đường \(y={{x}^{3}}-6{{x}^{2}}\) và y=6-11x được tính bởi công thức nào dưới đây?
  • Tìm hai số thực x và y thỏa mãn \(\left( x+2yi \right)+\left( 2-i \right)-1-3i=0\) với i là đơn vị ảo
  • Gọi \({{z}_{0}}\) là nghiệm phức có phần ảo dương của phương trình \({{z}^{2}}-4z+5=0\). Môđun của số phức \(\text{w}=i\left( {{z}_{0}}+2i \right)\) bằng
  • Trong không gian Oxyz, cho điểm \(M\left( 1;-2;3 \right)\) và đường thẳng \(\Delta :\frac{x-2}{3}=\frac{3-y}{4}=\frac{z}{2}\). Mặt phẳng đi qua M và vuông góc với \(\Delta \) có phương trình là
  • Trong không gian Oxyz, cho điểm \(M\left( 3\,;\,1\,;\,0 \right)\) và mặt phẳng \((\alpha ):3x-2x+z-3=0\). Đường thẳng \(\Delta \) đi qua M và vuông góc với mặt phẳng \((\alpha )\) có phương trình là
  • Cần xếp 4 quyển sách Toán, 2 quyển sách Anh, 2 quyển sách Lý vào một kệ sách, các quyển sách đôi một khác nhau. Xác suất để sách Lý xếp liền nhau và chỉ xếp cạnh sách Toán là
  • Cho hình chóp S.ABCD có đáy ABCD là hình thoi. Biết rằng tứ diện SABD là tứ diện đều cạnh a. Khoảng cách giữa hai đường thẳng BD và SC bằng
  • Có bao nhiêu giá trị nguyên của tham số thực m sao cho hàm số \(y = \frac{1}{3}{x^3} - {x^2} - \left( {3m + 2} \right)x + 2\) nghịch biến trên đoạn có độ dài bằng 4 là
  • Công ty A đang tiến hành thử nghiệm độ chính xác của bộ xét nghiệm COVID-19. Biết rằng: cứ sau n lần thử nghiệm thì tỷ lệ chính xác tuân theo công thức \(S(n) = \frac{1}{{1 + {{2020.10}^{ - 0,01n}}}}\). Hỏi phải tiến hành ít nhất bao nhiêu lần thử nghiệm để đảm bảo tỉ lệ chính xác đạt trên 80%?
  • Cho hàm số f(x) có bảng biến thiên của hàm số f'(x) như sau: Số điểm cực trị của hàm số \(y = f\left( {1 - {x^2}} \right)\) là:
  • Cho khối trụ có thể tích \(200\pi {{a}^{3}}\). Biết rằng khi cắt khối trụ đó bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3a thì thiết diện thu được là một hình vuông. Diện tích xung quanh của hình trụ đã cho bằng
  • Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}}{\cot x.f\left( {{\sin }^{2}}x \right)\text{d}x}=\int\limits_{1}^{16}{\frac{f\left( \sqrt{x} \right)}{x}\text{d}x}=1\). Tính tích phân \(\int\limits_{\frac{1}{8}}^{1}{\frac{f\left( 4x \right)}{x}\text{d}x}\).
  • Cho hàm số f(x) có đồ thị như hình vẽ Số nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\) của phương trình \(f\left( {4\left| {\sin x} \right|} \right) = 3\) là
  • Cho x,y,z>0; a,b,c>1 và \({{a}^{x}}={{b}^{y}}={{c}^{z}}=\sqrt{abc}\). Giá trị lớn nhất của biểu thức \(P=\frac{16}{x}+\frac{16}{y}-{{z}^{2}}\) thuộc khoảng nào dưới đây?
  • Cho hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+9x+m\) (m là tham số thực). Gọi là tập hợp tất cả các giá trị của sao cho \(\underset{\left[ 0;2 \right]}{\mathop{\text{max}}}\,{{\left[ f\left( x \right) \right]}^{2}}+\underset{\left[ 0;2 \right]}{\mathop{\text{min}}}\,{{\left[ f\left( x \right) \right]}^{2}}=2020\). Số tập con của S là:
  • Cho hình hộp chữ nhật \(ABCD.{A}'{B}'{C}'{D}'\) có \(A{A}'=9\), AB=3 và AD=4. Điểm M nằm trên cạnh \({A}'{B}'\) sao cho \({A}'{B}'=3.{A}'M\). Mặt phẳng \(\left( ACM \right)\) cắt \({B}'{C}'\) tại điểm N. Thể tích của khối đa diện lồi có các đỉnh là các điểm \(A,\,C,\,D,\,{A}',\,M,\,N,\,{C}'\) và \({D}'\) bằng
  • Cho phương trình \(m{{\ln }^{2}}(x+1)-(x+2-m)\ln (x+1)-x-2=0\) \(\left( 1 \right)\). Tập hợp tất cả giá trị của tham số m để phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt thỏa mãn \(0
ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Ôn tập Toán 12 Chương 3

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn bài Vợ chồng A Phủ

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 10 Lớp 12 Endangered Species

Tiếng Anh 12 mới Review 2

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Vật lý 12 Chương 4

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Ôn tập Hóa học 12 Chương 5

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Ôn tập Sinh 12 Chương 2 - Tiến hóa

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 4 Lịch Sử VN

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 Địa lý dân cư

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 2

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 4

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 3

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG Tiếng Anh

Video ôn thi THPT QG môn Hóa

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Sinh

Tuyên Ngôn Độc Lập

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Vợ Nhặt

Đất Nước- Nguyễn Khoa Điềm

Chiếc thuyền ngoài xa

Vợ chồng A Phủ

Việt Bắc

Những đứa con trong gia đình

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Chu Vi đáy Hình Trụ Bằng