Cho Khối Chóp S.ABCD Có đáy ABCD Là Hình Thang Vuông Tại A Và D ...

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Cho khối chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB = AD = 2a;CD = a . Góc giữa hai Cho khối chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB = AD = 2a;CD = a . Góc giữa hai

Câu hỏi

Nhận biết

Cho khối chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB = AD = 2a;CD = a . Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 600 . Gọi I là trung điểm của AD. Biết 2 mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích khối chóp S.ABCD.

A. \({V_{S.ABCD}} = 6{a^3}\sqrt 3 \)                                               B.  \({V_{S.ABCD}} = \dfrac{{6{a^3}\sqrt {15} }}{5}\)                C.  \({V_{S.ABCD}} = \dfrac{{3{a^3}\sqrt {15} }}{5}\)                D.  \({V_{S.ABCD}} = 6{a^3}\)

Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

ABCD là hình thang vuông

\( \Rightarrow {S_{ABCD}} = \dfrac{1}{2}\left( {DC + AB} \right).AD = \dfrac{1}{2}.\left( {a + 2a} \right).2a = 3{a^2}\)

Kẻ IH vuông góc BC,  (\(H \in BC\))

Ta có: \(\left\{ \begin{array}{l}\left( {SIB} \right) \bot \left( {ABCD} \right)\\\left( {SIC} \right) \bot \left( {ABCD} \right)\\\left( {SIB} \right) \cap \left( {SIC} \right) = SI\end{array} \right. \Rightarrow SI \bot \left( {ABCD} \right)\)

\( \Rightarrow SI \bot BC\),  mà \(IH \bot BC \Rightarrow BC \bot \left( {SHI} \right)\)

\(\begin{array}{l}\left( {SBC} \right) \cap \left( {ABCD} \right) = BC\,\,\\ \Rightarrow \left( {\widehat {\left( {SBC} \right);\left( {ABCD} \right)}} \right) = \left( {\widehat {SH;IH}} \right) = \widehat {SHI} = 60^\circ \end{array}\)

*) Tính IH:

Ta có: \({S_{ABCD}} = 3{a^2}\), \({S_{\Delta ABI}} = {a^2},\,\,{S_{\Delta IDC}} = \dfrac{1}{2}{a^2}\)

\( \Rightarrow {S_{\Delta IBC}} = 3{a^2} - {a^2} - \dfrac{1}{2}{a^2} = \dfrac{3}{2}{a^2}\)

\(BC = \sqrt {{a^2} + {{\left( {2a} \right)}^2}}  = \sqrt 5 a\)

\({S_{\Delta IBC}} = \dfrac{1}{2}.IH.BC \Rightarrow \dfrac{3}{2}{a^2} = \dfrac{1}{2}.IH.a\sqrt 5  \Rightarrow IH = \dfrac{{3a}}{{\sqrt 5 }}\)

Tam giác SIH vuông tại I

\( \Rightarrow SI = \tan 60^\circ .IH = \sqrt 3 .\dfrac{{3a}}{{\sqrt 5 }} = \dfrac{{3a\sqrt {15} }}{5}\)

*) Thể tích khối chóp S.ABCD:

 \({V_{S.ABCD}} = \dfrac{1}{3}.SI.{S_{ABCD}} = \dfrac{1}{3}.\dfrac{{3a\sqrt {15} }}{5}.3{a^2} = \dfrac{{3{a^3}\sqrt {15} }}{5}\)

 

Chọn: C

Thảo luận về bài viết (0)

  1. Linh

    Tại sao bc = căn của a^2+2a^2 vậy ạ

    Trả lời

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Hình Chóp Sabcd Có đáy Abcd Là Hình Thang Vuông Tại A Và D