Cho Một Hình đa Diện. Trong Các Khẳng định Sau, Khẳng định Nào Sai

Đáp án đúng: C.

*Lời giải:

Ta thấy các đáp án A, B, D đều đúng dựa vào khái niệm hình đa diện.

*Phương pháp giải

- Nắm vững lý thuyết về khối đa diện

* Lý thuyết cần nắm và một số dạng toán về khối đa diện:

Khối đa diện đều.

-Định nghĩa:Khối đa diện đều là khối đa diện lồi có tính chất sau đây:

a) Mỗi mặt của nó là một đa giác đều p cạnh.

b) Mỗi đỉnh của nó là đỉnh chung của đúng q mặt.

Khối đa diện đều như vậy được gọi là khối đa diện đều loại {p; q}.

Từ định nghĩa trên ta thấy các mặt của khối đa diện đều là những đa giác đều bằng nhau.

- Định lí:Chỉ có năm loại khối đa diện đều. Đó là các loại {3; 3}; loại {4; 3}; loại {3; 4}; loại {5; 3} và loại {3; 5}.

Tùy theo số mặt của chúng, năm loại khối đa diện đều kể trên theo thứ tự gọi là các khối tứ diện đều, khối lập phương, khối bát diện đều (hay khối tám mặt đều), khối mười hai mặt đều và khối hai mươi mặt đều.

Lý thuyết Khối đa diện lồi và khối đa diện đều chi tiết – Toán lớp 12 (ảnh 1)Lý thuyết Khối đa diện lồi và khối đa diện đều chi tiết – Toán lớp 12 (ảnh 1)

Bảng tóm tắt của năm loại khối đa diện đều.

Lý thuyết Khối đa diện lồi và khối đa diện đều chi tiết – Toán lớp 12 (ảnh 1)

Thể tích của khối lăng trụ.

Định lí:Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là: V = B.h

Thể tích khối chóp.

Định lí.Thể tích khối chóp có diện tích đáy B và chiều cao h là:V=13B.h.

Xem thêm các bài viết liên quan hay, chi tiết

Lý thuyết Khối đa diện lồi và khối đa diện đều (mới 2024 + Bài Tập) – Toán 12

50 Bài tập Khối đa diện lồi và khối đa diện đều Toán 12 mới nhất

Từ khóa » Hình đa Diện Trong Các Khẳng định Sau Khẳng định Nào Sai