[CHUẤN NHẤT] Công Thức Chỉnh Hợp, Tổ Hợp, Hoán Vị - Toploigiai

Câu hỏi: Công thức chỉnh hợp, tổ hợp, hoán vị.

Lời giải:

1. Công thức Chỉnh hợp

Cho tập A gồm n phần tử và số nguyên k với  1 ≤ k ≤ n. Khi lấy k phần tử của A và sắp xếp chúng theo một thứ tự ta được một chỉnh hợp chập  k của n  phần tử của A.

Kí hiệu Akn là số chỉnh hợp chập k của n phần tử

Khi đó, công thức chỉnh hợp là:  

[CHUẤN NHẤT] Công thức chỉnh hợp, tổ hợp, hoán vị

2. Công thức tổ hợp

Cho tập A có n phần tử và số nguyên k với 1 ≤ k ≤ n . Mỗi tập con của A có k phần tử được gọi là một tổ hợp chập k của n phần tử của A.

Kí hiệu Ckn là số tổ hợp chập k của n phần tử.

Khi đó, công thức tổ hợp là:

[CHUẤN NHẤT] Công thức chỉnh hợp, tổ hợp, hoán vị (ảnh 2)

3. Công thức hoán vị

Cho tập A gồm n phần tử (n≥1). Khi sắp xếp n phần tử này theo một thứ tự ta được một hoán vị các phần tử của tập A.

Kí hiệu số hoán vị của n phần tử là Pn.

Khi đó, công thức hoán vị là:Pn = n!

[CHUẤN NHẤT] Công thức chỉnh hợp, tổ hợp, hoán vị (ảnh 3)

Cùng Top lời giải phân biệt, chỉnh hợp, tổ hợp, hoán vị nhé!

Mục lục nội dung 1. Chỉnh hợp2. Tổ hợp3. Hoán vị4. Bài tập

1. Chỉnh hợp

Trong toán học, chỉnh hợp là cách chọn những phần tử từ một nhóm lớn hơn và có phân biệt thứ tự, trái với tổ hợp là không phân biệt thứ tự.

Theo định nghĩa, chỉnh hợp chập k của n phần tử là một tập con của tập hợp mẹ S chứa n phần tử, tập con gồm k phần tử riêng biệt thuộc S và có sắp thứ tự. Số chỉnh hợp chập k của một tập S được tính theo công thức sau:

[CHUẤN NHẤT] Công thức chỉnh hợp, tổ hợp, hoán vị (ảnh 4)

2. Tổ hợp

Trong Toán học, tổ hợp là cách chọn những phần tử từ một nhóm lớn hơn mà không phân biệt thứ tự. Trong những trường hợp nhỏ hơn có thể đếm được số tổ hợp. 

Ví dụ: Cho ba loại quả, một quả táo, một quả cam và một quả lê, có ba cách kết hợp hai loại quả từ tập hợp này: một quả táo và một quả lê; một quả táo và một quả cam; một quả lê và một quả cam.

Kí hiệu Ckn là số tổ hợp chập k của n phần tử.

Khi đó, công thức tổ hợp là:

[CHUẤN NHẤT] Công thức chỉnh hợp, tổ hợp, hoán vị (ảnh 5)

3. Hoán vị

Trong toán học, đặc biệt là trong đại số trừu tượng và các lĩnh vực có liên quan, một hoán vị là một song ánh từ một tập hợp hữu hạn X vào chính nó.

Trong lý thuyết tổ hợp, khái niệm hoán vị cũng mang một ý nghĩa truyền thống mà nay ít còn được dùng, đó là mô tả một bộ có thứ tự không lặp

Cho tập A gồm n phần tử ( n≥1). Khi sắp xếp n phần tử này theo một thứ tự ta được một hoán vị các phần tử của tập A.

Kí hiệu số hoán vị của n phần tử là Pn.

Khi đó, công thức hoán vị là: Pn = n!

4. Bài tập

Câu 1:​​ Cho mặt phẳng chứa đa giác đều (H ) có 20 cạnh. Xét tam giác có 3 đỉnh được lấy từ các đỉnh của (H ). Hỏi có bao nhiêu tam giác có đúng 1 cạnh là cạnh của (H ).

A.​​ 1440.                         B.​​ 360.                         C.​​ 1120.                       D.​​ 816.

Câu 2:​​ Cho hai đường thẳng song song​​ d1​​ và​​ d2​​ .​​ Trên​​ d1​​ lấy 17 điểm phân biệt, trên​​ d2​​ lầy 20 điểm phân biệt. Tính số tam giác mà có các đỉnh được chọn từ​​ 37​​ điểm này.

A.​​ 5690.                         B.​​ 5960.                        C.​​ 5950.                      D.​​ 5590.

Câu 3:​​ Số giao điểm tối đa của​​ 5​​ đường tròn phân biệt là:

A.​​ 10.                             B.​​ 20.                             C.​​ 18.                          D.​​ 22.

Câu 4:​​ Số giao điểm tối đa của​​ 10​​ đường thẳng phân biệt là:

A.​​ 50.                              B.​​ 100.                           C.​​ 120.                        D.​​ 45.

Câu 5:​​ Với đa giác lồi​​ 10​​ cạnh thì số đường chéo là

A.​​ 90.                               B.​​ 45.                             C.​​ 35.                         D.​​ Một số khác.

Câu 6:​​ Cho đa giác đều n đỉnh n ≥3. Tìm n biết rằng đa giác đã cho có 135​​ đường chéo.

A.​​ n​​ =15.                          B.​​ n​​ =​​ 27.                       C.​​ n​​ =​​ 8.                      D.​​ n​​ =18.

Câu 7:​​ Trong một ban chấp hành đoàn gồm 7 người, cần chọn ra 3 người vào ban thường vụ. Nếu cần chọn ban thường vụ gồm ba chức vụ Bí thư, Phó bí thư, Ủy viên thường vụ thì có bao nhiêu cách chọn?

A.​​ 210.                              B.​​ 200.                           C.​​ 180.                         D.​​ 150.

Câu 8​​ Một cuộc thi có 15 người tham dự, giả thiết rằng không có hai người nào có điểm bằng nhau. Nếu kết quả của cuộc thi là việc chọn ra các giải nhất, nhì, ba thì có bao nhiêu kết quả có thể?

A.​​ 2730.                             B.​​ 2703.                         C.​​ 2073.                        D.​​ 2370.

Câu 9:​​ Trong một dạ hội cuối năm ở một cơ quan, ban tổ chức phát ra 100 vé xổ số đánh số từ 1 đến 100 cho 100 người. Xổ số có 4 giải: 1 giải nhất, 1 giải nhì, 1 giải ba, 1 giải tư. Kết quả là việc công bố ai trúng giải nhất, giải nhì, giải ba, giải tư. Hỏi có bao nhiêu kết quả có thể?

A.​​ 94109040.                     B.​​ 94109400.                   C.​​ 94104900.                  D.​​ 94410900.

Câu 10:​​ Trong một dạ hội cuối năm ở một cơ quan, ban tổ chức phát ra 100 vé xổ số đánh số từ 1 đến 100 cho 100 người. Xổ số có 4 giải: 1 giải nhất, 1 giải nhì, 1 giải ba, 1 giải tư. Kết quả là việc công bố ai trúng giải nhất, giải nhì, giải ba, giải tư. Hỏi có bao nhiêu kết quả có thể nếu biết rằng người giữ vé số 47 được giải nhất?

A.​​ 944109.                         B.​​ 941409.                         C.​​ 941094.                     D.​​ 941049.

ĐÁP ÁN:

Câu

1

2

3

4

5

6

7

8

9

10

ĐA

B

C

B

D

C

D

A

A

B

C

Từ khóa » Chỉnh Hợp Và Tổ Hợp Hoán Vị